

DPA-2024-OCTOBER-2044 Delivery Point Network Study

Published on 1/13/2025

By SPP Engineering, Transmission Services

REVISION HISTORY

DATE OR VERSION NUMBER	AUTHOR	CHANGE DESCRIPTION	COMMENTS
1/13/2025	SPP	Original	

CONTENTS

Revision History	i
Section 1: Introduction	1
Section 2: Study Methodology	2
Objective	2
Study Process	2
Section 3: Results of Analysis	4
Potential Thermal Overloads and Voltage Violations	4
Short Circuit	4
Stability	8
Section 4: Conclusion)

SECTION 1: INTRODUCTION

This report outlines the results of an evaluation of regional transmission impacts from delivery point request DPA-2024-October-2044. The requesting entity plans to add new load to the existing delivery point called 477 - Wildwood Ranch (WWR477) with an in-service date of 7/1/2027. The WWR477 delivery point is in the Liberty Utilities (EMDE) Transmission System.

The load flow models used for the evaluation were 2024 Integrated Transmission Planning (ITP) base reliability models. Southwest Power Pool (SPP) performed an Alternating Current (AC) contingency analysis on these models using PSS®E.

SECTION 2: STUDY METHODOLOGY

OBJECTIVE

The purpose of this study was to determine the regional Transmission System impacts within the SPP footprint due to the new load served by EMDE. SPP performed a Delivery Point Network Study (DPNS) with the configurations shown in Table 2-1 below.

STUDY PROCESS

- Model Assumptions
 - o 2024 ITP Base Reliability Model Series
 - Model years 2028 and 2033
 - Summer Peak (2028S and 2033S), Winter Peak (2028W and 2033W), and Light Load (2028L and 2033L)
 - o 2024 ITP Short Circuit Model Series
 - 2028 Summer Max Fault
 - 2024 Transmission System Planning (TPL) Dynamic Model Series
 - 2033 Summer Peak Base and Change Cases

Case Name	Study Year	Season	Scenario	Load (MW/MVAR)
2024ITPPF-28L.sav	2028	Light Load	Base Reliability	Base Case
2024ITPPF-28S.sav	2028	Summer Peak	ummer Peak Base Reliability Base Case	
2024ITPPF-28W.sav	2028	Winter Peak	Base Reliability	Base Case
2024ITPPF-33L.sav	2033	Light Load	Base Reliability	Base Case
2024ITPPF-33S.sav	2033	Summer Peak	Base Reliability	Base Case
2024ITPPF-33W.sav	2033	Winter Peak	Base Reliability	Base Case
2024ITPPF-28L_2044.sav	2028	Light Load	Base Reliability	WWR477 = 100/32.9
2024ITPPF-28S_2044.sav	2028	Summer Peak	Base Reliability	WWR477 = 200/65.74
2024ITPPF-28W_2044.sav	2028	Winter Peak	Base Reliability	WWR477 = 200/65.74
2024ITPPF-33L_2044.sav	2033	Light Load	Base Reliability	WWR477 = 200/65.74
2024ITPPF-33S_2044.sav	2033	Summer Peak	Base Reliability	WWR477 = 200/65.74
2024ITPPF-33W_2044.sav	2033	Winter Peak	Base Reliability	WWR477 = 200/65.74

Table 2-1: Study Cases

- Steady State Analysis
 - Assumptions (consistent with the ITP analysis)
 - AC contingency analysis on all load flow models using PSS®E
 - Monitored Elements
 - SPP facilities 69 kV and above
 - First-tier companies 100 kV and above
 - Contingencies (consistent with the ITP analysis)
 - Provided for the ITP by SPP members and first-tier companies
 - Apply SPP Criteria and National American Electric Reliability Corporation (NERC) reliability standards
 - Compare thermal and voltage violations that occur with and without the WWR477 delivery point change to determine thermal and voltage violations resulting from the load addition to the Transmission System.
- Dynamics Analysis
 - Assumptions
 - 2024 TPL Dynamics Model Series
 - 2033 Summer Peak Base and Change Cases
 - o Analyses
 - Fast Fault Screening using Physical and Operational Margins Studio
- Short Circuit Analysis
 - Assumptions
 - Used 2024 Final ITP Short Circuit models (Max Fault)
 - Placed all available facilities in service
 - \circ Generation
 - Transmission lines
 - \circ Transformers
 - o Buses
 - Short Circuit Output
 - Physical
 - Short Circuit Coordinates
 - Polar
 - Short Circuit Parameters
 - o 3 Phase
 - FLAT classical fault analysis conditions
 - o Analyses
 - Three-phase fault

SECTION 3: RESULTS OF ANALYSIS

POTENTIAL THERMAL AND VOLTAGE VIOLATIONS

The analysis identified potential thermal violations resulting from the new load at the WWR477 delivery point. Table 3-1 details the potential thermal violations resulting from the load addition.

Model	Bus kV	Facility Name	Contingency Name	Rate A, Rate B (MVA)	Max Flow (MVA)	Base Case Max Loading (%)
28L	161	WWR477 - STL439 5 - 1	BASE CASE	223/223	265.15	118.9
28S	161	WWR477 - STL439 5 - 1	BASE CASE	223/223	375.76	168.5
28W	161	WWR477 - STL439 5 - 1	BASE CASE	257/257	375.99	146.3
33L	161	WWR477 - STL439 5 - 1	BASE CASE	223/223	370.85	166.3
33S	161	WWR477 - STL439 5 - 1	BASE CASE	223/223	375.76	168.5
33W	161	WWR477 - STL439 5 - 1	BASE CASE	257/257	375.99	146.3

Table 3-1: Potential Thermal Violations

SHORT CIRCUIT

SPP performed short circuit analysis for the 2028 Summer Peak with the new load addition. The analysis identified the currents as listed in Table 3-2.

Season	Model	Fault	Bus	Current (Amps)
28S	Max Fault	Three Phase	2VERONA 69.000	6,454
28S	Max Fault	Three Phase	7BLACKBERRY 345.00	15,440
28S	Max Fault	Three Phase	1NEOSHTR 13.200	13,944
28S	Max Fault	Three Phase	2NEOSAC 69.000	20,454
28S	Max Fault	Three Phase	2WASHBRN 69.000	6,651
28S	Max Fault	Three Phase	BEAVER 5 161.00	12,403
28S	Max Fault	Three Phase	WASHBURN5 161.00	8,482
28S	Max Fault	Three Phase	NEO SPA5 161.00	15,592
28S	Max Fault	Three Phase	CRG X1 1 13.800	10,096
28S	Max Fault	Three Phase	CARTHAG5 161.00	16,870
28S	Max Fault	Three Phase	CRG X2 1 13.800	9,454
28S	Max Fault	Three Phase	CARTHG 2 69.000	13,565
28S	Max Fault	Three Phase	SPRGFLD5 161.00	26,844
28S	Max Fault	Three Phase	DELWARE7 345.00	11,196
28S	Max Fault	Three Phase	VINTAJC4 138.00	5,044
28S	Max Fault	Three Phase	MIAMI 2 69.000	12,125
28S	Max Fault	Three Phase	MIAMI 5 161.00	9,424
28S	Max Fault	Three Phase	AFTON 5 161.00	8,366
28S	Max Fault	Three Phase	MIAMI1 1 13.800	4,731
28S	Max Fault	Three Phase	MIAMI2 1 13.800	13,939
28S	Max Fault	Three Phase	NSES 2X1 13.200	40,595

Season	Model	Fault	Bus	Current (Amps)
28S	Max Fault	Three Phase	NEC U3 12.000	21,787
28S	Max Fault	Three Phase	NRSS7 345.00	11,752
28S	Max Fault	Three Phase	NEOSHO 7 345.00	17,573
28S	Max Fault	Three Phase	N34511 13.800	40,578
28S	Max Fault	Three Phase	N34521 13.800	40,475
28S	Max Fault	Three Phase	ERIE5 161.00	7,054
28S	Max Fault	Three Phase	BAKER 2 69.000	6,084
28S	Max Fault	Three Phase	MARMTNE5 161.00	8,096
28S	Max Fault	Three Phase	MARMTNW5 161.00	8,091
28S	Max Fault	Three Phase	NEOSHO 5 161.00	22,840
28S	Max Fault	Three Phase	N34545 161.00	22,666
28S	Max Fault	Three Phase	ERIEN1 13.200	11,026
28S	Max Fault	Three Phase	MARMATN1 13.200	10,897
28S	Max Fault	Three Phase	NEOSH4 1 13.200	9,272
28S	Max Fault	Three Phase	NEOSH5 1 13.200	11,224
28S	Max Fault	Three Phase	LIBERTY4 138.00	7,675
28S	Max Fault	Three Phase	NEPARSN4 138.00	12,899
28S	Max Fault	Three Phase	TV1MNDV4 138.00	7,145
28S	Max Fault	Three Phase	NEOSHOS4 138.00	24,533
28S	Max Fault	Three Phase	NEOSHO 4 138.00	24,576
28S	Max Fault	Three Phase	NEOSHON4 138.00	24,462
28S	Max Fault	Three Phase	N34534 138.00	24,151
28S	Max Fault	Three Phase	ERIE2 69.000	9,199
28S	Max Fault	Three Phase	MARMATN2 69.000	8,905
28S	Max Fault	Three Phase	ORDNJCT2 69.000	8,455
28S	Max Fault	Three Phase	CRAWFOR2 69.000	7,204
28S	Max Fault	Three Phase	ERIE 2 69.000	9,080
28S	Max Fault	Three Phase	NEOSHON2 69.000	23,275
28S	Max Fault	Three Phase	NEOSHOS2 69.000	23,300
28S	Max Fault	Three Phase	LACYGNE7 345.00	28,275
28S	Max Fault	Three Phase	MON376J2 69.000	3,958
28S	Max Fault	Three Phase	MON352J2 69.000	7,636
28S	Max Fault	Three Phase	SCAM66 2 69.000	3,052
28S	Max Fault	Three Phase	COL282 2 69.000	6,683
28S	Max Fault	Three Phase	SEK225T2 69.000	3,964
28S	Max Fault	Three Phase	SEK225 2 69.000	3,948
28S	Max Fault	Three Phase	SMN425 2 69.000	2,629
28S	Max Fault	Three Phase	SHR444 2 69.000	3,058
28S	Max Fault	Three Phase	CHE491T2 69.000	1,869
28S	Max Fault	Three Phase	SEN375 2 69.000	3,111
28S	Max Fault	Three Phase	WEB105 2 69.000	8,002
28S	Max Fault	Three Phase	EXP449T2 69.000	9,598
28S	Max Fault	Three Phase	EXP4492 69.000	7,840
28S	Max Fault	Three Phase	PRC460 2 69.000	5,986
28S	Max Fault	Three Phase	COL473 2 69.000	6,600
28S	Max Fault	Three Phase	WWR477 161.00	22,706
28S	Max Fault	Three Phase	SVRCK469 5 161.00	13,918

Season	Model	Fault	Bus	Current (Amps)
28S	Max Fault	Three Phase	KOD4712 69.000	14,810
28S	Max Fault	Three Phase	ATL109 5 161.00	16,650
28S	Max Fault	Three Phase	ORO110 5 161.00	20,017
28S	Max Fault	Three Phase	AUR124 5 161.00	10,388
28S	Max Fault	Three Phase	RIV4525 161.00	24,786
28S	Max Fault	Three Phase	JOP145 5 161.00	19,199
28S	Max Fault	Three Phase	NE0184 5 161.00	14,396
28S	Max Fault	Three Phase	TIP292 5 161.00	17,329
28S	Max Fault	Three Phase	RDS295 5 161.00	8,011
28S	Max Fault	Three Phase	ASB349 5 161.00	10,873
28S	Max Fault	Three Phase	CJ 366 5 161.00	12,379
28S	Max Fault	Three Phase	LAR382 5 161.00	16,585
28S	Max Fault	Three Phase	MON383 5 161.00	12,012
28S	Max Fault	Three Phase	JOP389 5 161.00	19,510
28S	Max Fault	Three Phase	CAR395 5 161.00	12,304
28S	Max Fault	Three Phase	HOC404 4 138.00	6,523
28S	Max Fault	Three Phase	HOC404 5 161.00	13,337
28S	Max Fault	Three Phase	FIR417 5 161.00	14,358
28S	Max Fault	Three Phase	OAK432 5 161.00	18,559
28S	Max Fault	Three Phase	NOL435 5 161.00	9,869
28S	Max Fault	Three Phase	STL439 5 161.00	25,158
28S	Max Fault	Three Phase	CPK446 5 161.00	8,309
28S	Max Fault	Three Phase	RNM393 5 161.00	14,121
28S	Max Fault	Three Phase	RIV453 5 161.00	23,398
28S	Max Fault	Three Phase	RIV167 5 161.00	23,019
28S	Max Fault	Three Phase	RIV452T 5 161.00	24,404
28S	Max Fault	Three Phase	NEO 56 2 69.000	9,922
28S	Max Fault	Three Phase	JOP 59 2 69.000	19,753
28S	Max Fault	Three Phase	JOP 64 2 69.000	19,556
28S	Max Fault	Three Phase	WEB436 2 69.000	8,974
28S	Max Fault	Three Phase	COL 94 2 69.000	7,702
28S	Max Fault	Three Phase	COL476 2 69.000	6,740
28S	Max Fault	Three Phase	CAR108 2 69.000	7,180
28S	Max Fault	Three Phase	ATL109 2 69.000	22,042
28S	Max Fault	Three Phase	ORO110 2 69.000	18,554
28S	Max Fault	Three Phase	AUR124 2 69.000	12,165
28S	Max Fault	Three Phase	JOP145 2 69.000	20,676
28S	Max Fault	Three Phase	MON152 2 69.000	10,631
28S	Max Fault	Three Phase	RIV167 2 69.000	17,644
28S	Max Fault	Three Phase	NEO184 2 69.000	20,454
28S	Max Fault	Three Phase	GAT490 2 69.000	14,500
28S	Max Fault	Three Phase	BAX492 2 69.000	10,660
28S	Max Fault	Three Phase	GAL278 2 69.000	12,887
28S	Max Fault	Three Phase	OAK280 2 69.000	16,372
28S	Max Fault	Three Phase	JOP284 2 69.000	16,848
28S	Max Fault	Three Phase	TIP292 2 69.000	10,268
28S	Max Fault	Three Phase	JOP341 2 69.000	15,421

Season	Model	Fault	Bus	Current (Amps)
28S	Max Fault	Three Phase	JOP372 2 69.000	15,388
28S	Max Fault	Three Phase	RAC375 2 69.000	6,746
28S	Max Fault	Three Phase	QUA377 2 69.000	7,940
28S	Max Fault	Three Phase	MON383 2 69.000	12,271
28S	Max Fault	Three Phase	JOP389 2 69.000	15,197
28S	Max Fault	Three Phase	JOP391 5 161.00	13,207
28S	Max Fault	Three Phase	RNM393 2 69.000	20,399
28S	Max Fault	Three Phase	HOC404 2 69.000	11,406
28S	Max Fault	Three Phase	RIV406 2 69.000	15,648
28S	Max Fault	Three Phase	JOP422 5 161.00	12,999
28S	Max Fault	Three Phase	JOP430 2 69.000	15,764
28S	Max Fault	Three Phase	R12G4531 13.800	20,103
28S	Max Fault	Three Phase	R13G167 13.800	53,887
28S	Max Fault	Three Phase	R10G1671 13.200	28,312
28S	Max Fault	Three Phase	L1G382 1 13.200	72,182
28S	Max Fault	Three Phase	L2G3821 13.200	72,491
28S	Max Fault	Three Phase	L3G3821 18.000	31,857
28S	Max Fault	Three Phase	L4G3821 18.000	31,881
28S	Max Fault	Three Phase	S1G4391 13.200	63,713
28S	Max Fault	Three Phase	S2G4391 18.000	66,347
28S	Max Fault	Three Phase	S3G4391 18.000	74,728
28S	Max Fault	Three Phase	S4G4391 18.000	81,872
28S	Max Fault	Three Phase	PLB447 2 69.000	14,497
28S	Max Fault	Three Phase	GLF3392 69.000	11,732
28S	Max Fault	Three Phase	ATL1091 12.500	16,922
28S	Max Fault	Three Phase	ORO110 1 12.500	16,925
28S	Max Fault	Three Phase	AUR1241 12.500	13,515
28S	Max Fault	Three Phase	JOP1451 12.500	15,638
28S	Max Fault	Three Phase	NEO184B1 12.500	12,700
28S	Max Fault	Three Phase	MON3831 12.500	15,681
28S	Max Fault	Three Phase	JOP3891 12.500	16,129
28S	Max Fault	Three Phase	HOC404A1 12.500	4,338
28S	Max Fault	Three Phase	HOC404B1 12.500	16,132
28S	Max Fault	Three Phase	RNM393 1 12.500	19,419
28S	Max Fault	Three Phase	RIV452 1 12.500	10,772
28S	Max Fault	Three Phase	GAL278T 69.000	13,177
28S	Max Fault	Three Phase	BAX488 5 161.00	14,992
285	Max Fault	Three Phase	KINGSPT WF 161.00	7,485

Table 3-2: Short Circuit Results

STABILITY

SPP performed a Fast Fault Screening (FFS) using the 2033 Summer Peak for the base case and change case models. The change case models include the WWR477 delivery point changes. SPP determined no significant differences in the critical clearing times between the base and change cases. Therefore, a transient stability analysis is not required.

TRANSMISSION SOLUTIONS

The addition of the load at the existing WWR477 delivery point caused potential thermal overloads on the radial 161 kV line serving the WWR477 delivery point. SPP's solution is to rebuild the overloaded transmission line that serves multiple customers. The solution is listed below.

Solution: Rebuild WWR477 to STL439 5 Circuit 1 (Total cost \$628,972)

The solution solves all issues identified in Table 3-1 in the most cost-effective manner.

New Upgrade Description*	Mileage	MVA (Rate B)	Date Needed**	Host Transmission Owner	Estimated Cost***
Rebuild WWR477 to STL439 5 Circuit 1	0.5	376	7/1/2027	EMDE	\$628,972
TOTAL NEW UPGRADE COST					\$628,972

Table 3-3: Recommended Upgrade Solution

*All requests with a Network Upgrade(s) identified in the DPNS will be subject to further evaluation in the soonest available Integrated Transmission Planning Assessment that is able to include the load changes, if it is determined that the Network Upgrade(s) will be able to meet the study timeframe requirements pursuant to the standardized project timelines in SPP Business Practices, based on the SPP determined Network Upgrade(s) need date. If it is determined that a Network Upgrade(s) identified from a DPNS is unable to be further evaluated pursuant to the Integrated Transmission Planning Assessment, the DPNS report will be posted on the SPP website once SPP is notified by the Transmission Customer to update the applicable Network Integration Transmission Service Agreement to reflect the changes in delivery points and the Network Upgrade(s).

Pursuant to Attachment AQ of the Tariff, the Transmission provider is responsible for assessing the impacts on the Transmission System caused by modifying an existing delivery point or establishing the new delivery point through the Delivery Point Network Study ("DPNS"). The DPNS may determine the need for a Network Upgrade(s) necessary for the modification of an existing delivery point or the establishment of a new delivery point. A Network Upgrade(s) that the Transmission Customer or Host Transmission Owner desires that exceeds the needed Network Upgrade(s) identified in the DPNS will need to be studied through the Transmission Provider's Sponsored Upgrade study process to evaluate the impacts of the desired changes on the Transmission System.

**If the project need date specified in this study cannot be met, the Transmission Owner will be required to submit mitigations pursuant to the SPP Project Tracking process. All upgrades or mitigations must be in place prior to the dates shown in Table 3-3.

***Note that the estimated new upgrade cost provided in this report is an SPP Conceptual Cost Estimate only; this is preliminary, and a more refined Study Cost Estimate will be developed after issuance of this report through a Standardized Cost Estimate Reporting Template (SCERT).

SECTION 4: CONCLUSION

The AC analysis revealed potential thermal violations associated with the WWR477 load addition. The study shows that the following upgrade is required to reliably serve the load addition:

• Rebuild WWR477 to STL439 5 Circuit 1

The transmission upgrade in Table 3-3 is recommended to mitigate the potential thermal violations.