DISIS 2020-001 Incremental Long-Term Congestion Rights Study Report GEN-2020-057 Published on 08/08/2025 By SPP Generation Interconnections Dept. # **REVISION HISTORY** | DATE OR
VERSION NUMBER | AUTHOR | CHANGE DESCRIPTION | |---------------------------|--------|--------------------------| | August 8, 2025 | SPP | Initial report published | | | | | | | | | ## CONTENTS | Revision History | i | |-------------------------|-----| | Introduction | . 1 | | Study Inputs | . 2 | | Model Basis | . 2 | | Monitored Facilities | . 2 | | Contingency Events | . 2 | | Network Upgrades | . 2 | | Contingent Upgrades | . 3 | | Customer Transfer Paths | . 3 | | Study Methodology | . 4 | | Transfer Analysis | . 4 | | ILTCR Study Results | . 5 | | Conclusion | . 6 | | Appendix A | . 1 | ## INTRODUCTION Incremental Long-Term Congestion Rights (ILTCRs) were made available by FERC 685 Guideline 3 as a reimbursement mechanism for sponsors of transmission upgrades. The guideline specifies that long-term firm transmission rights made feasible by transmission upgrades or expansions must be available upon request to any party that pays for such upgrades or expansions in accordance with the transmission organization's prevailing cost allocation methods for upgrades or expansions. Effective July 1, 2020, ILTCR is the default cost recovery mechanism for eligible Network Upgrades (NU) with Directly Assigned Upgrade Cost (DAUC) as a result of a Generation Interconnection Study (GIS), Aggregate Transmission Service Study (ATSS), or a Sponsored Upgrade Study in SPP. The objective of the ILTCR analysis is to determine the incremental Available Transfer Capability (ATC) created on each of the Upgrade Sponsor submitted source-to-sink paths over a ten-year period resulting from the construction of the Network Upgrade. The Upgrade Sponsor may then have the option to use the results of this study to obtain candidate ILTCRs on the path selected. The ILTCR study process was completed for GEN-2020-057 (the Customer) that has Directly Assigned Upgrade Costs (DAUC) for the following network upgrades from DISIS 2020-001 Studies. - Rebuild the MARTCIT5 to REDEL 5 161 kV line 1 (DISIS-2020-001) - Rebuild the SHWNMSN5 to LENEXA 5 161 kV line 1 (DISIS-2020-001) - Rebuild the STILWEL5 to REDEL 5 161 kV line 1 (DISIS-2020-001) - Rebuild the CRAIG 5 to LENEXA 5 161 kV line 2 (DISIS-2020-001) ## STUDY INPUTS #### **MODEL BASIS** The 2024 ITP Transmission Services (TS) cases were the starting point for the analysis. The following details specify the particular models utilized for this evaluation. - Model years 2029, 2034 - o Summer Peak (2029SP, 2034SP) - o Winter Peak (2029WP, 2034WP) - o Light Load (2029 LP, 2034LP) #### **MONITORED FACILITIES** The monitored elements include all SPP control area branches, ties, and buses 69 kV and above, and all first tier Non-SPP control area branches and ties 100 kV and above. NERC Power Transfer Distribution Flowgates for SPP and first tier Non-SPP control areas are monitored. Additional NERC Flowgates are monitored in second tier or greater Non-SPP control areas. - All branches and ties within the following areas: - o SPP Internal Areas for 60kV 999kV facilities: - **•** 506–546, 640 659, 998, 999 - o SPP External Areas for 100kV 999kV facilities: - **327**, 330, 351, 356, 502, 600, 615, 620, 627, 635, 661, 680 - NERC, SPP, and Tier 1 Permanent Monitor Flowgates (thermal) #### **CONTINGENCY EVENTS** The contingency set includes all SPP control area branches and ties 69kV and above, first tier Non-SPP control area branches and ties 115 kV and above, any defined contingencies for these control areas, and generation unit outages for the SPP control areas with SPP reserve share program redispatch. - All branches, ties, shunts, and generators within the following areas: - o SPP Internal Areas for 60kV 999kV facilities: o - **•** 515 546, 640, 641, 642, 645, 650, 652, 659, 998, 999 - o SPP External Areas for 100kV 999kV facilities: - **327**, 330, 351, 356, 502, 600, 615, 620, 627, 635, 661, 680 - NERC, SPP, and Tier 1 Permanent Contingent Flowgates - SPP T.O. Specific P1, P2, P4, and P5 TPL-005-1 Contingencies - SPP T.O. Specific Op Guide Implementation #### **NETWORK UPGRADES** The Network Upgrades were sorted based on construction lead-time in order to reflect the sequence of in-service dates for the upgrades. Each Network Upgrade was evaluated sequentially and as a standalone addition. Sequentially, the first Network Upgrade was evaluated in comparison to the TS Case. The second Network Upgrade was evaluated on top of the previously added Network Upgrade. The process was repeated until all Network Upgrades were evaluated. Network Upgrades that share the same construction lead-time were evaluated as incremental upgrades to the final set of Network Upgrades with the same lead-times. The studied Network Upgrades and associated lead time for the Customer is listed in Table 0-1. **Table 0-1: Network Upgrades** | Upgrade
ID | Upgrade Name | Estimated Lead-
Time (months) | |---------------|--|----------------------------------| | 170585 | Rebuild the MARTCIT5 to REDEL 5 161 kV line 1 | 48 | | 170586 | Rebuild the SHWNMSN5 to LENEXA 5 161 kV line 1 | 48 | | 170587 | Rebuild the STILWEL5 to REDEL 5 161 kV line 1 | 48 | | 170612 | Rebuild the CRAIG 5 to LENEXA 5 161 kV line 2 | 48 | #### **CONTINGENT UPGRADES** Contingent upgrades are not yet in-service. These facilities have been assigned to higher queued interconnection customers. These facilities were included in the models respective of their estimated lead-time for this study prior to determining the incremental transfer amount that each Network Upgrade provided. The list of contingent upgrades and their associated lead-time for the participating Customers is listed in Table 0-2. **Table 0-2: Contingent Upgrade Sequence** | Upgrade ID | Upgrade Name | Estimated
Lead-Time
(months) | |------------|---|------------------------------------| | NTC 220773 | Line - Anadarko - Gracemont 138 kV double Ckt 2 & 3 | 36 | | NTC 220812 | Build New Beckham to Potter 345 kV Line | 36 | | NTC 220889 | Build New Phantom to Crossroads to Potter 765 kV Line | 36 | #### CUSTOMER TRANSFER PATHS The Customer is eligible to select up to three (3) source-to-sink transfer paths per Network Upgrade. The list of valid source-to-sink paths is posted on the SPP OASIS site under Source/Sink Summary and were available to Customers with a valid OASIS certificate. Customers may select paths for ILTCR studies using their new generator that was studied as a source. The generator must be registered in the Marketplace before it is able to participate in the Congestion Hedging process. Each source-to-sink transfer path was collected by SPP for the Customer and those submissions are captured in the Results section. ## STUDY METHODOLOGY #### TRANSFER ANALYSIS A DC transfer analysis was conducted using PowerGEM TARA to determine the limiting flowgates in each applicable case for the respective transfer paths provided by the Customer. Constraints were defined as any overloaded facility in which the transfer had three (3) percent or more TDF or OTDF impact for system intact or contingency conditions respectively. AC Contingency Analysis was performed on each case to identify existing overloaded flowgates that were not caused by the Customer, Network Upgrade, or the source-to-sink transfer path. These flowgates were filtered out of the transfer analysis results for the respective case in which they were reported in the AC Contingency Analysis. Once the initial DC limiting flowgates were filtered to valid results, the top five (5) limiting flowgates in each applicable case for the respective transfer paths provided by the Customer were AC verified. If the AC verified results reported a non-converged condition and all other AC verified transfers were not zero, then the AC non-converged condition was reviewed for appropriate adjustments until an AC transfer limit was established. If no adjustments were found to resolve the AC non-converged condition, then the AC transfer limit was reported as 0 MW to reflect the condition in which no transfer could be achieved. With the transfer limits AC verified, the deltas between the minimum AC transfer amounts across all analyzed cases for each path with and without the associated Network Upgrade were determined as follows: - If ATC pre-NU < 0 and ATC post-NU < 0, then individual increment = 0 - If ATC pre-NU < 0 and ATC post-NU > 0, then individual increment = ATC post-NU - If ATC pre-NU > 0 and ATC post-NU > 0, then individual increment = ATC post-NU ATC pre-NU If the Network Upgrade costs were shared between multiple Customers, then the minimum delta was allocated to each participating Customer in the same proportion as the pro-rata share of the total cost of the upgrade allocated. The lowest amount of candidate MWs that can be awarded is 0.1 MW. Therefore, any candidate MWs below 0.1 MWs is reported as 0.0 MWs. ## ILTCR STUDY RESULTS Table 0-1 summarizes the minimum incremental ATC created across all seasons for each of the source-to-sink paths provided by the Customer for the Network Upgrades. Appendix A includes the detailed results of the top five (5) most limiting flowgates for each transfer path as submitted by the Customer. Table 0-1: GEN-2020-057 Candidate ILTCRs | NU# | NU | Source | Sink | Min
Delta
(MW) | Cost
Allocation
(%) | cILTCR
(MW) | |--------|---|--------------|-------|----------------------|---------------------------|----------------| | 170585 | Rebuild the MARTCIT5 to REDEL 5 161 kV
line 1 | GEN-2020-057 | KCPL | 2.8 | 19.97% | 0.6 | | 170585 | Rebuild the MARTCIT5 to REDEL 5 161 kV
line 1 | GEN-2020-057 | MPS | 2.8 | 19.97% | 0.6 | | 170585 | Rebuild the MARTCIT5 to REDEL 5 161 kV
line 1 | GEN-2020-057 | WR_WR | 0 | 19.97% | 0 | | 170586 | Rebuild the SHWNMSN5 to LENEXA 5 161
kV line 1 | GEN-2020-057 | KCPL | 0 | 33.31% | 0 | | 170586 | Rebuild the SHWNMSN5 to LENEXA 5 161
kV line 1 | GEN-2020-057 | MPS | 0 | 33.31% | 0 | | 170586 | Rebuild the SHWNMSN5 to LENEXA 5 161 kV line 1 | GEN-2020-057 | WR_WR | 0 | 33.31% | 0 | | 170587 | Rebuild the STILWEL5 to REDEL 5 161 kV
line 1 | GEN-2020-057 | KCPL | 3.5 | 19.97% | 0.7 | | 170587 | Rebuild the STILWEL5 to REDEL 5 161 kV
line 1 | GEN-2020-057 | MPS | 3.5 | 19.97% | 0.7 | | 170587 | Rebuild the STILWEL5 to REDEL 5 161 kV
line 1 | GEN-2020-057 | WR_WR | 0 | 19.97% | 0 | | 170612 | Rebuild the CRAIG 5 to LENEXA 5 161 kV
line 2 | GEN-2020-057 | KCPL | 0 | 44.55% | 0 | | 170612 | Rebuild the CRAIG 5 to LENEXA 5 161 kV line 2 | GEN-2020-057 | MPS | 0 | 44.55% | 0 | | 170612 | Rebuild the CRAIG 5 to LENEXA 5 161 kV
line 2 | GEN-2020-057 | WR_WR | 0 | 44.55% | 0 | ## **CONCLUSION** The ILTCR analysis determined the incremental ATC created on the Customer submitted source-to-sink paths as provided by the associated Network Upgrade. The Customer may choose the one source-to-sink path in which to receive candidate ILTCRs based on the ATC results presented. If a source-to-sink path that reported no incremental ATC (0 MW) is chosen, then the Customer will not receive any candidate ILTCRs for the Network Upgrade. This data will be included in the applicable agreement(s) and executed before filing with FERC. The Customer must notify SPP 45 days in advance of energization of the associated Network Upgrade via RMS ticket. Tracking of the Network Upgrade progress can be achieved by utilizing the SPP Quarterly Project Tracking workbooks posted on the SPP website. Once the Network Upgrade is energized, SPP will make available TCR MWs for the candidate ILTCR until the end of that TCR year in the next feasible monthly TCR auction. ## APPENDIX A **Network Upgrade** Base Upgrade **ATC** IC NU Source Sink Limit Case **Monitored Facility Contingency Name** FCITO **FCITC** Name Increase Rebuild the MARTCIT5 to 542966 WGARDNR5 161 542966 WGARDNR5 161 GEN-2020-057 170585 GEN-2020-057 KCPL 1 34SP0 204.5 207.3 2.8 REDEL 5 161 kV line 1 543132 BNSF 5 161 1 543049 CEDRCRK5 161 1 Rebuild the MARTCIT5 to 533261 PENTAGN3 115 P23:345:KCPL-GMO:IATAN-R7-GEN-2020-057 170585 GEN-2020-057 KCPL 2 34SP0 342.8 349.9 7.1 REDEL 5 161 kV line 1 533282 MUND 3 115 1 9:::EHV: Rebuild the MARTCIT5 to 533261 PENTAGN3 115 P23:345:KCPL-GMO:IATAN-R7-GEN-2020-057 170585 GEN-2020-057 KCPL 3 29SP0 348.6 355.8 7.2 REDEL 5 161 kV line 1 533282 MUND 3 115 1 9:::EHV: Rebuild the MARTCIT5 to 542966 WGARDNR5 161 542966 WGARDNR5 161 170585 4 34SP0 GEN-2020-057 GEN-2020-057 KCPL 390.9 400 9.1 REDEL 5 161 kV line 1 543049 CEDRCRK5 161 1 543132 BNSF 5 161 1 Rebuild the MARTCIT5 to 543132 BNSF 5 161 542966 WGARDNR5 161 5 GEN-2020-057 170585 GEN-2020-057 KCPL 34SP0 430.2 433.3 3.1 REDEL 5 161 kV line 1 543044 MOONLT 5 161 1 543049 CEDRCRK5 161 1 542966 WGARDNR5 161 542966 WGARDNR5 161 Rebuild the MARTCIT5 to 170585 1 34SP0 204.5 GEN-2020-057 GEN-2020-057 MPS 207.3 2.8 REDEL 5 161 kV line 1 543132 BNSF 5 161 1 543049 CEDRCRK5 161 1 P23:345:KCPL-GMO:IATAN-R7-Rebuild the MARTCIT5 to 533261 PENTAGN3 115 170585 2 34SP0 GEN-2020-057 GEN-2020-057 MPS 342.8 349.9 7.1 REDEL 5 161 kV line 1 533282 MUND 3 115 1 9:::EHV: P23:345:KCPL-GMO:IATAN-R7-Rebuild the MARTCIT5 to 533261 PENTAGN3 115 170585 GEN-2020-057 3 29SP0 GEN-2020-057 MPS 348.6 355.8 7.2 REDEL 5 161 kV line 1 533282 MUND 3 115 1 9:::EHV: 542966 WGARDNR5 161 Rebuild the MARTCIT5 to 542966 WGARDNR5 161 170585 GEN-2020-057 4 34SP0 390.9 GEN-2020-057 MPS 400 9.1 REDEL 5 161 kV line 1 543049 CEDRCRK5 161 1 543132 BNSF 5 161 1 Rebuild the MARTCIT5 to 543132 BNSF 5 161 542966 WGARDNR5 161 170585 GEN-2020-057 GEN-2020-057 MPS 5 34SP0 430.2 433.3 3.1 REDEL 5 161 kV line 1 543044 MOONLT 5 161 1 543049 CEDRCRK5 161 1 533417 EMCPHER3 115 P12:115:WERE:EMCP-REFI-Rebuild the MARTCIT5 to GEN-2020-057 170585 GEN-2020-057 WR WR 1 34WP0 530.5 530.5 0 REDEL 5 161 kV line 1 533426 MANVILE3 115 1 115:HV: Rebuild the MARTCIT5 to 533417 EMCPHER3 115 P12:115:WERE:EMCP-REFI-GEN-2020-057 170585 GEN-2020-057 WR_WR 2 29WP0 581.7 581.7 0 REDEL 5 161 kV line 1 533426 MANVILE3 115 1 115:HV: | IC | NU | Network Upgrade
Name | Source | Sink | Limit | Case | Monitored Facility | Contingency Name | Base
FCITC | Upgrade
FCITC | ATC
Increase | |--------------|--------|---|--------------|-------|-------|-------|--|--|---------------|------------------|-----------------| | GEN-2020-057 | 170585 | Rebuild the MARTCIT5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | WR_WR | 3 | 34WP0 | 532872 EMCPHER6 230
996855 EAST MCPHE1 115
1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 632.6 | 632.6 | 0 | | GEN-2020-057 | 170585 | Rebuild the MARTCIT5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | WR_WR | 4 | 34WP0 | 996855 EAST MCPHE1 115
533417 EMCPHER3 115 1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 654.9 | 654.9 | 0 | | GEN-2020-057 | 170585 | Rebuild the MARTCIT5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | WR_WR | 5 | 29WP0 | 532872 EMCPHER6 230
996859 EAST MCPHE1 115
1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 669.2 | 669.2 | 0 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | KCPL | 1 | 34SP0 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 215.1 | 207.3 | 0 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | KCPL | 2 | 34SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 265.9 | 349.9 | 84 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | KCPL | 3 | 29SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 273 | 355.8 | 82.8 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | KCPL | 4 | 34SP0 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 400.4 | 400 | 0 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | KCPL | 5 | 34SP0 | 543132 BNSF 5 161
543044 MOONLT 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 441.2 | 433.3 | 0 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | MPS | 1 | 34SP0 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 215.1 | 207.3 | 0 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | MPS | 2 | 34SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 265.9 | 349.9 | 84 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | MPS | 3 | 29SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 273 | 355.8 | 82.8 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | MPS | 4 | 34SP0 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 400.4 | 400 | 0 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | MPS | 5 | 34SP0 | 543132 BNSF 5 161
543044 MOONLT 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 441.2 | 433.3 | 0 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | WR_WR | 1 | 34WP0 | 533417 EMCPHER3 115
533426 MANVILE3 115 1 | P12:115:WERE:EMCP-REFI-
115:HV: | 530.5 | 530.5 | 0 | | IC | NU | Network Upgrade
Name | Source | Sink | Limit | Case | Monitored Facility | Contingency Name | Base
FCITC | Upgrade
FCITC | ATC
Increase | |--------------|--------|---|--------------|-------|-------|-------|--|--|---------------|------------------|-----------------| | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | WR_WR | 2 | 29WP0 | 533417 EMCPHER3 115
533426 MANVILE3 115 1 | P12:115:WERE:EMCP-REFI-
115:HV: | 581.7 | 581.7 | 0 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | WR_WR | 3 | 34WP0 | 532872 EMCPHER6 230
996855 EAST MCPHE1 115
1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 632.6 | 632.6 | 0 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | WR_WR | 4 | 34WP0 | 996855 EAST MCPHE1 115
533417 EMCPHER3 115 1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 654.9 | 654.9 | 0 | | GEN-2020-057 | 170586 | Rebuild the SHWNMSN5
to LENEXA 5 161 kV line 1 | GEN-2020-057 | WR_WR | 5 | 29WP0 | 532872 EMCPHER6 230
996859 EAST MCPHE1 115
1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 669.2 | 669.2 | 0 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | KCPL | 1 | 34SP0 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 203.8 | 207.3 | 3.5 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | KCPL | 2 | 34SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 341.1 | 349.9 | 8.8 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | KCPL | 3 | 29SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 347 | 355.8 | 8.8 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | KCPL | 4 | 34SP0 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 388.6 | 400 | 11.4 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | KCPL | 5 | 34SP0 | 543132 BNSF 5 161
543044 MOONLT 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 429.2 | 433.3 | 4.1 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | MPS | 1 | 34SP0 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 203.8 | 207.3 | 3.5 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | MPS | 2 | 34SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 341.1 | 349.9 | 8.8 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | MPS | 3 | 29SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 347 | 355.8 | 8.8 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | MPS | 4 | 34SP0 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 388.6 | 400 | 11.4 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | MPS | 5 | 34SP0 | 543132 BNSF 5 161
543044 MOONLT 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 429.2 | 433.3 | 4.1 | | IC | NU | Network Upgrade
Name | Source | Sink | Limit | Case | Monitored Facility | Contingency Name | Base
FCITC | Upgrade
FCITC | ATC
Increase | |--------------|--------|--|--------------|-------|-------|-------|--|--|---------------|------------------|-----------------| | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | WR_WR | 1 | 34WP0 | 533417 EMCPHER3 115
533426 MANVILE3 115 1 | P12:115:WERE:EMCP-REFI-
115:HV: | 530.5 | 530.5 | 0 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | WR_WR | 2 | 29WP0 | 533417 EMCPHER3 115
533426 MANVILE3 115 1 | P12:115:WERE:EMCP-REFI-
115:HV: | 581.7 | 581.7 | 0 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | WR_WR | 3 | 34WP0 | 532872 EMCPHER6 230
996855 EAST MCPHE1 115
1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 632.6 | 632.6 | 0 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | WR_WR | 4 | 34WP0 | 996855 EAST MCPHE1 115
533417 EMCPHER3 115 1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 654.9 | 654.9 | 0 | | GEN-2020-057 | 170587 | Rebuild the STILWEL5 to
REDEL 5 161 kV line 1 | GEN-2020-057 | WR_WR | 5 | 29WP0 | 532872 EMCPHER6 230
996859 EAST MCPHE1 115
1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 669.2 | 669.2 | 0 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | KCPL | 1 | 34SP0 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 209.1 | 207.3 | 0 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | KCPL | 2 | 34SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 325.6 | 349.9 | 24.3 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | KCPL | 3 | 29SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 331.7 | 355.8 | 24.1 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | KCPL | 4 | 34SP0 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 402.2 | 400 | 0 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | KCPL | 5 | 34SP0 | 543132 BNSF 5 161
543044 MOONLT 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 435 | 433.3 | 0 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | MPS | 1 | 34SP0 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 209.1 | 207.3 | 0 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | MPS | 2 | 34SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 325.6 | 349.9 | 24.3 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | MPS | 3 | 29SP0 | 533261 PENTAGN3 115
533282 MUND 3 115 1 | P23:345:KCPL-GMO:IATAN-R7-
9:::EHV: | 331.7 | 355.8 | 24.1 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | MPS | 4 | 34SP0 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 542966 WGARDNR5 161
543132 BNSF 5 161 1 | 402.2 | 400 | 0 | ## Southwest Power Pool, Inc. | IC | NU | Network Upgrade
Name | Source | Sink | Limit | Case | Monitored Facility | Contingency Name | Base
FCITC | Upgrade
FCITC | ATC
Increase | |--------------|--------|--|--------------|-------|-------|-------|--|--|---------------|------------------|-----------------| | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | MPS | 5 | 34SP0 | 543132 BNSF 5 161
543044 MOONLT 5 161 1 | 542966 WGARDNR5 161
543049 CEDRCRK5 161 1 | 435 | 433.3 | 0 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | WR_WR | 1 | 34WP0 | 533417 EMCPHER3 115
533426 MANVILE3 115 1 | P12:115:WERE:EMCP-REFI-
115:HV: | 530.5 | 530.5 | 0 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | WR_WR | 2 | 29WP0 | 533417 EMCPHER3 115
533426 MANVILE3 115 1 | P12:115:WERE:EMCP-REFI-
115:HV: | 581.7 | 581.7 | 0 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | WR_WR | 3 | 34WP0 | 532872 EMCPHER6 230
996855 EAST MCPHE1 115
1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 632.6 | 632.6 | 0 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | WR_WR | 4 | 34WP0 | 996855 EAST MCPHE1 115
533417 EMCPHER3 115 1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 654.9 | 654.9 | 0 | | GEN-2020-057 | 170612 | Rebuild the CRAIG 5 to
LENEXA 5 161 kV line 2 | GEN-2020-057 | WR_WR | 5 | 29WP0 | 532872 EMCPHER6 230
996859 EAST MCPHE1 115
1 | P12:115:MIDW:LYONS-
WHEATLANDS:::HV: | 669.2 | 669.2 | 0 |