## INTERCONNECTION FACILITIES STUDY REPORT GEN-2020-043

## REVISION HISTORY



## CONTENTS

Revision History ..... i
Summary ..... 1
Introduction ..... 1
Phase(s) of Interconnection Service ..... 1
Compensation for Amounts Advanced for Network Upgrade(s) ..... 1
Interconnection Customer Interconnection Facilities ..... 2
Transmission Owner Interconnection Facilities and Non-Shared Network Upgrade(s) ..... 3
Shared Network Upgrade(s) ..... 4
Contingent Network Upgrade(s) ..... 5
Affected System Upgrade(s) ..... 6
Conclusion ..... 7
Appendices ..... 8
A: Transmission Owner's Interconnection Facilities Study Report and Network Upgrades Report(s) ..... 9

## SUMMARY

## INTRODUCTION

This Interconnection Facilities Study (IFS) for Interconnection Request GEN-2020-043 is for a 56.52 MW generating facility located in Douglas County Nebraska. The Interconnection Request was studied in the Group 92020 Interim Impact Study for ERIS/NRIS. The Interconnection Customer's requested in-service date is May 31, 2023.

The interconnecting Transmission Owner, Omaha Public Power District (OPPD), performed a detailed IFS at the request of SPP. The full report is included in Appendix A. SPP has determined that full Interconnection Service will be available after the assigned Transmission Owner Interconnection Facilities (TOIF), Non-Shared Network Upgrades, Shared Network Upgrades, Contingent Network Upgrades, and Affected System Upgrades that are required for full interconnection service are completed.

The primary objective of the IFS is to identify necessary Transmission Owner Interconnection Facilities, Network Upgrades, other direct assigned upgrades, cost estimates, and associated upgrade lead times needed to grant the requested Interconnection Service.

## PHASE(S) OF INTERCONNECTION SERVICE

It is not expected that Interconnection Service will occur in phases. However, full Interconnection Service will not be available until all Interconnection Facilities and Network Upgrade(s) can be placed in service.

## COMPENSATION FOR AMOUNTS ADVANCED FOR NETWORK UPGRADE(S)

FERC Order ER20-1687-000 eliminated the use of Attachment Z2 revenue crediting as an option for compensation. The Incremental Long Term Congestion Right (ILTCR) process will be the sole process to compensate upgrade sponsors as of July 1st, 2020.

## INTERCONNECTION CUSTOMER INTERCONNECTION FACILITIES

The Generating Facility is proposed to consist of one (1) 56.52 MW gas fired reciprocating engine for a total generating nameplate capacity of 56.52 MW.

The Interconnection Customer's Interconnection Facilities to be designed, procured, constructed, installed, maintained, and owned by the Interconnection Customer at its sole expense include:

- $\quad 13.8 \mathrm{kV}$ underground cable collection circuits;
- 13.8 kV to 161 kV transformation substation with associated 13.8 kV and 161 kV switchgear;
- One (1) $161 / 20 \mathrm{kV} 60 / 80 / 100$ MVA (ONAN/ONAF/ONAF) step-up transformer to be owned and maintained by the Interconnection Customer at the Interconnection Customer's substation;
- An overhead 161 kV line to connect the Interconnection Customer's substation to the Point of Interconnection ("POI") at the 161 kV bus at existing Transmission Owner substation ("S1347") that is owned and maintained by Transmission Owner;
- All transmission facilities required to connect the Interconnection Customer's substation to the POI;
- Equipment at the Interconnection Customer's substation necessary to maintain a composite power delivery at continuous rated power output at the high-side of the generator substation at a power factor within the range of 95\% lagging and 95\% leading in accordance with Federal Energy Regulatory Commission (FERC) Order 827. The Interconnection Customer may use inverter manufacturing options for providing reactive power under no/reduced generation conditions. The Interconnection Customer will be required to provide documentation and design specifications demonstrating how the requirements are met; and,
- All necessary relay, protection, control and communication systems required to protect Interconnection Customer's Interconnection Facilities and Generating Facilities and coordinate with Transmission Owner's relay, protection, control and communication systems.


## TRANSMISSION OWNER INTERCONNECTION FACILITIES AND NON-SHARED NETWORK UPGRADE(S)

To facilitate interconnection, the interconnecting Transmission Owner will perform work as shown below necessary for the acceptance of the Interconnection Customer's Interconnection Facilities.

Table 1 and Table 2 lists the Interconnection Customer's estimated cost responsibility for Transmission Owner Interconnection Facilities (TOIF) and Non-Shared Network Upgrade(s) and provides an estimated lead time for completion of construction. The estimated lead time begins when the Generator Interconnection Agreement has been fully executed.

Table 1: Transmission Owner Interconnection Facilities (TOIF)

| Transmission Owner Interconnection <br> Facilities (TOIF) | Total Cost <br> Estimate (\$) | Allocated <br> Percent <br> (\%) | Allocated Cost <br> Estimate (\$) | Estimate <br> d Lead <br> Time |
| :--- | :---: | :---: | :---: | :---: |
| S1347 161kV GEN-2020-043 |  |  |  |  |
| Interconnection (TOIF)(156388): Install <br> a double breaker bay at substation S1347. | $\$ 2,292,537$ | $100 \%$ | $\$ 2,292,537$ | 10 <br> Months |
| Total | $\$ 2,292,537$ |  | $\$ 2,292,537$ |  |

Table 2: Non-Shared Network Upgrade(s)

| Non-Shared Network Upgrades <br> Description | ILTCR | Total Cost <br> Estimate (\$) | Allocated <br> Percent <br> (\%) | Allocated <br> Cost Estimate <br> (\$) | Estimated <br> Lead Time |
| :--- | :---: | :---: | :---: | :---: | :---: |
| None | N/A | $\$ 0$ | N/A | $\$ 0$ | N/A |
| Total |  | $\$ 0$ |  | $\$ 0$ |  |

## SHARED NETWORK UPGRADE(S)

The Interconnection Customer's share of costs for Shared Network Upgrades is estimated in Table 3 below.

Table 3: Interconnection Customer Shared Network Upgrade(s)

| Shared Network Upgrades Description | ILTCR | Total Cost Estimate (\$) | Allocated Percent (\%) | $\begin{gathered} \text { Allocated } \\ \text { Cost } \\ \text { Estimate (\$) } \end{gathered}$ | Estimated <br> Lead Time |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S1347 161kV Interconnection Expansion (156393): <br> - S1209-S1347 161kV line Reroute <br> - S1252-S1347 161kV line Reroute <br> - S1347 161kV Switchyard | TBD | \$27,418,650 | 33.33\% | \$9,139,550 | 10 Months |
| Total |  | \$27,418,650 |  | \$9,139,550 |  |

All studies have been conducted assuming that higher-queued Interconnection Request(s) and the associated Network Upgrade(s) will be placed into service. If higher-queued Interconnection Request(s) withdraw from the queue, suspend or terminate service, the Interconnection Customer's share of costs may be revised. Restudies, conducted at the customer's expense, will determine the Interconnection Customer's revised allocation of Shared Network Upgrades.

## CONTINGENT NETWORK UPGRADE(S)

Certain Contingent Network Upgrades are currently not the cost responsibility of the Interconnection Customer but will be required for full Interconnection Service.

Table 4: Interconnection Customer Contingent Network Upgrade(s)

| Contingent Network Upgrade(s) Description | Current Cost <br> Assignment | Estimated In- <br> Service Date |
| :--- | :---: | :---: |
| None | $\$ 0$ | N/A |

Depending upon the status of higher- or equally-queued customers, the Interconnection Request's inservice date is at risk of being delayed or Interconnection Service is at risk of being reduced until the inservice date of these Contingent Network Upgrades.

## AFFECTED SYSTEM UPGRADE(S)

To facilitate interconnection, the Affected System Transmission Owner will be required to perform the facilities study work as shown below necessary for the acceptance of the Interconnection Customer's Interconnection Facilities. Table 5 displays the current impact study costs provided by either MISO or AECI as part of the Affected System Impact review. The Affected System facilities study could provide revised costs and will provide each Interconnection Customer's allocation responsibilities for the upgrades.

Table 5: Interconnection Customer Affected System Upgrade(s)

$\left.$| Affected System Upgrades Description | Total Cost <br> Estimate (\$) | Allocated <br> Percent (\%) |
| :--- | :---: | :---: | | Allocated Cost |
| :---: |
| Estimate (\$) | \right\rvert\,

## CONCLUSION

After all Interconnection Facilities and Network Upgrades have been placed into service, Interim Interconnection Service for 56.52 MW can be granted. Interim Interconnection Service will be delayed until the TOIF, Non-Shared NU, Shared NU, Contingent NU, Affected System Upgrades that are required for interconnection service are completed. The Interconnection Customer's estimated cost responsibility for Interim interconnection service is summarized in the table below.

Table 6: Cost Summary

| Description | Allocated Cost Estimate |
| :--- | ---: |
| Transmission Owner Interconnection Facilitie Upgrade(s) | $\$ 2,292,537$ |
| Non-Shared Network Upgrade(s) | $\$ 0$ |
| Shared Network Upgrade(s) | $\$ 9,139,550$ |
| Affected System Upgrade(s) | $\$ 0$ |
| Total | $\mathbf{\$ 1 1 , 4 3 2 , 0 8 7}$ |

Use the following link for Quarterly Updates on upgrades from this report: https://spp.org/spp-documents-filings/?id=18641

A draft Generator Interconnection Agreement will be provided to the Interconnection Customer consistent with the final results of this IFS report. The Transmission Owner and Interconnection Customer will have 60 days to negotiate the terms of the GIA consistent with the SPP Open Access Transmission Tariff (OATT).

Southwest Power Pool, Inc.

## APPENDICES

## A: TRANSMISSION OWNER'S INTERCONNECTION FACILITIES STUDY REPORT AND NETWORK UPGRADES REPORT(S)

See next page for the Transmission Owner's Interconnection Facilities Study Report and Network Upgrades Report(s).

## Interconnection Facilities Study



Omaha Public Power District
Rev 0 - August 26, 2022

## Executive Summary

This study evaluates the interconnection of two new generation sites in the Omaha Public Power District (OPPD) service area. The interconnection was evaluated for the steady state, stability and fault current impacts to the OPPD and adjacent transmission system per North American Electric Reliability Corporation (NERC) Standard FAC-002 "Facility Interconnection Studies".

Turtle Creek Station (TCS) consists of two 255MW combustion turbines (GEN-2020-025 and GEN-2020-028). This new station will interconnect to a new 161 kV switchyard named S1363. This new switchyard will network to existing OPPD switchyards S1362 and S1280.

Standing Bear Lake Station (SBLS) consists of nine 18.84MW reciprocating engines grouped in blocks of three (GEN-2020-043, -044 and -045) (i.e. 56.52 MW per request). This new station will interconnect to a new 161 kV switchyard named S1347. This new switchyard will network to existing OPPD substation S1209 and switchyard S1252.

Both stations are expected to be in-service by 2024. However, this study will include evaluation of 2023 models due to the deferral of North Omaha Station retirements and natural gas conversions approved by the OPPD Board of Directors in August of 2022. These retirements and conversions are currently implemented in the 2024 and later models; by including 2023 models the combined impact from the deferral and new generation will be captured.

In addition, this study also evaluates the impact of several network upgrades that OPPD has planned to enhance the resiliency of the transmission system in regards to transferring power from these new units during certain system events. The network upgrades consist of:
a. A second new 161 kv line S1362-S1363
b. A rebuild of 161 kv line S1281-S1254
c. A rebuild of 161 kV line S1201-S1206
d. New 161 kV line S1281-S1361
e. Uprate S1209-S1347
f. Uprate S1252-S1347
g. Tap existing 161kV line S1236-S1345 into substation S1252 to create two "new" circuits.
i. S1236-S1252
ii. S1345-S1252

The results of the study indicate that in order to support full generation output of GEN-2020-025 and -028, that 161 kV line S1254-S1281 line must be uprated. As mentioned above, this is already a planned upgrade for the project.

In addition, the study shows that the network upgrades identified above do not introduce any adverse impacts to the transmission system.
Contents
Executive Summary ..... 1
SECTION 1: POWER FLOW ..... 3
Contingency Selection ..... 3
N-1 \& Multiple Element Contingency Results ..... 5
SECTION 2: Stability ..... 6
Modeling ..... 6
Contingency Selection ..... 6
Stability Monitoring ..... 7
Stability Modeling ..... 9
Scenarios ..... 10
Stability Results ..... 11
SECTION 3: Short Circuit ..... 12
Modeling ..... 12
Short Circuit Simulation ..... 12
Contingency Selection ..... 12
Scenarios ..... 13
Short Circuit Results ..... 13
SECTION 4: MITIGATIONS ..... 14
Impact of Facility Improvements ..... 14
SECTION 5: Detailed Cost Estimates and Schedule. ..... 15
Appendix 1 - GEN-2020-025 and GEN-2020-028 Area Oneline ..... 16
Appendix 2 - Short Circuit Results ..... 17
Appendix 3 - Stability Events ..... 29

## SECTION 1: POWER FLOW

## Models

Southwest Power Pool (SPP) Integrated Transmission Planning (ITP) 2022 Base Reliability (BR) models. This will include the 1,5 and 10 year light, summer peak and winter peak models.

## Base Model Changes

The Platteview solar installation is an 81MW generation source located at OPPD's 69kV switchyard S6846. This installation has been granted interim service and therefore will be added to the base model.

## Generation Dispatch

Two dispatch scenarios will be studied for steady state.

1. The new generation will be sunk to the OPPD service area by reducing the existing OPPD generation by an equivalent MW amount. Units will be reduced in an economic dispatch order.
2. The new generation will be sunk external to OPPD by simply allowing the excess generation to export to the entire interchange via swing machine reduction.

## Contingency Selection

NERCTPL-001-4 "Transmission System Planning Performance Requirements" Table 1 contingency events that do not allow for the interruption of firm transmission service will be evaluated. This is supported by the fact that any issue introduced by the new generation would also be mitigated by reducing that generation per the TPL-001-4 allowance.

This contingency set also includes contingencies from neighboring utilities.

## Monitoring

The OPPD system and five buses beyond will be monitored for both voltage and thermal impacts.

Thermal monitoring will use Rate 1/A for system intact, and Rate 2/B for post-contingent loading. Any thermal loading greater than $100 \%$ will be identified.

Transfer Distribution Factor (TDF) will be calculated for each generation request. TDFs on facilities that exceed $20 \%$ will be considered significantly impacted facilities. TDFs on facilities that exceed $3 \%$ will be provided for informational only.

$$
T D F=100 \times \frac{M V A \text { flow }(\text { with Project })-M V A \text { flow }(w / o \text { Project })}{\text { Project } M W}
$$

Voltage monitoring will be performed as follows: all voltages for greater than $1.05 \mathrm{pu},>100 \mathrm{kV}$ for less than 0.95pu and <100kV for less than 0.90pu.

Voltage impacts that exceed 0.02 pu will be considered significantly impacted facilities.

## Scenarios

The following interconnection scenarios will be evaluated for steady state using Siemens PSSE.

1. The new generation stations will be interconnected with minimal new infrastructure.

This scenario closely replicates what is being studied in the SPP generation interconnection studies. This scenario will identify the minimum TPL/FAC required upgrades to support interconnection.
a. Turtle Creek Station (S1363) will interconnect by tapping into the existing S1281-S1362 161kV line resulting in two "new" 161kV circuits.
i. S1281-S1363 (558MVA)
ii. S1362-S1363 (558MVA)
b. Standing Bear Lake Station (S1347) will interconnect by tapping into the existing S1209-S1252 161kV line resulting in two "new" 161kV circuits.
i. S1209-S1347
ii. S1252-S1347
2. The generation stations will be interconnected the same as scenario 1 ; however, additional system upgrades will also be implemented to improve system reliability and resiliency. These upgrades were previously identified in OPPD sensitivity studies, but are being formally studied here. See Appendix 1 for a local area transmission interconnection map of GEN-2020-025/-028.
a. A second new 161 kv line S1362-S1363 (558MVA)
b. A rebuild of 161 kv line S1281-S1254 (558MVA)
c. A rebuild of 161 kV line S1201-S1206 (377MVA)
d. New 161 kV line S1281-S1361 (558MVA)
e. Uprate S1209-S1347 (377MVA)
f. Uprate S1252-S1347 (377MVA)
g. Tap existing 161 kV line S1236-S1345 in to substation S1252 to create two "new" circuits.
i. S1236-S1252
ii. S1345-S1252

## N-1 \& Multiple Element Contingency Results

Steady State without Upgrades (Scenario 1)
There is one thermal overload identified for the addition of the new generation. This overload is associated with the addition of GEN-2020-025 and/or -028.

- S1281-S1254 Ckt 1 (161kV) overloads for a loss of S1363-S1362 Ckt 1.
- This results in a worst case loading of $149.5 \%$ in the 23 L model.
- This results in a worst case TDF of $82.9 \%$ in the 23 L model.
- The TDF is greater than $20 \%$ in all models.

There are no voltage issues for the addition of GEN-2020-025 or -028.

There are no thermal or voltage issues for the addition of GEN-2020-043, -044 or -045.

Steady State with Upgrades (Scenario 2)
There are no thermal or voltage violations with all previously planned upgrades implemented.

## SECTION 2: Stability

## Modeling

Southwest Power Pool (SPP) Model Development Advisory Group (MDAG) 2021 Dynamic models. This will include the 2 year summer peak and 3 year light and summer peak models.

## Base Model Changes

The Platteview solar installation is an 81MW generation source located at OPPD's 69kV switchyard S6846. This installation has been granted interim service and therefore will be added to the base model.

The base stability models already included these generation interconnection requests (GEN-2020-025, GEN-2020-028, GEN-2020-043, GEN-2020-044 and GEN-2020-045) along with some of the proposed transmission upgrades described in the Section 1: Power Flow, Scenario 2 model that are intended to support these generation interconnection requests. These upgrades were removed from the base model using the following changes:

- Remove S1363-S1362 161kV Ckt 2
- Remove S1345-S1252 161kV Ckt 1
- Remove S1236-S1252 161kV Ckt 1
- Add S1236-S1345 161kV Ckt 1
- Remove S1281-S1361 Ckt1
- Add S1281-S1362 Ckt 1

This results in the models matching the base steady state power flow models used for Scenario 1.

## Generation Dispatch

For stability, the generation will be sunk to only the swing machine (i.e. Steady State Dispatch Scenario 2) in order to preserve the base case stability. This will still provide a case where all generation is interacting to events (i.e. summer peak), and another case where conventional and nearby generation is minimized (i.e. light load).

## Contingency Selection

The fault disturbances OPPD selected are based on engineering judgment for those disturbances involving facilities in OPPD's system that are expected to produce the most severe system impacts. Previous stability study results are used to aid in the selection of disturbances. Many of the selected disturbances are in close proximity to significant generation plants or generation outlets where such a disturbance could result in loss of synchronism, loss of generation and potentially lead to grid instability. Other reasons why disturbances were selected are the following:

- The disturbance involves the outage of one or more strong transmission sources to the location of a fault.
- The disturbance involves high-speed automatic reclosing or automatic reclosing after a relatively short time delay.
- It is believed that the voltage swings that will result from the disturbance will be larger than those resulting from other disturbances will.
- The disturbance involves a fault at a bus having a load to which a dynamic load model is applied in a manner specific to that load.
- Selection of the disturbance would increase the variety of locations at which disturbances are studied.

See Appendix 3 for a list of event.

## Stability Monitoring

All simulations were performed using Siemens PSSE.
Rotor angle dynamic simulation plots were generated for all monitored generators. Because of the number of buses monitored for voltage violations, dynamic simulation plots were developed for those buses flagged for not meeting disturbance performance criteria as listed below. Simulation plots are available on request and are not included in this report. The following items are monitored and recorded and represent OPPD's criteria for identifying instability conditions as per TPL-001-4 R6:

Rotor angle stability and oscillation damping - Rotor angles were monitored for all OPPD area generators (Area 645) and all generators in the following areas:

- 635 MEC
- 640 NPPD
- 650 LES

Those units that exhibited signs of instability were marked for further analysis. Rotor angle deviations were calculated relative to the system swing machine, Brown's Ferry. The curves of rotor angle deviation versus time for machines with rotor angle deviation greater than or equal to 16 degrees (measured as absolute maximum peak to absolute minimum peak) were judged against the SPPR1 and SPPR5 criteria as described in the SPP Disturbance Performance Requirements. Machines with rotor angle deviations less than 16 degrees that did not exhibit convergence were evaluated on an individual basis. Machines with rotor angle deviations greater than 180 degrees were also flagged. The SPPR1 and SPPR5 criteria is restated below:

- Well damped angular oscillations shall meet one of the following two requirements when calculated directly from the rotor angle:
- Successive Positive Peak Ratio (SPPR1) must be less than or equal to 0.95 or have a Damping Factor \% greater than or equal to 5\%, where SPPR1 and its associated Damping Factor are calculated as follows:

Peak Rotor Angl e of 2nd Positive Peak minus Minimum Value
SPPR1 $\leq 0.95$

```
Damping Factor % = (1-SPPR1) x 100% \geq5%
```

- Successive Positive Peak Ratio Five (SPPR5) must be less than or equal to 0.774 or have a Damping Factor \% greater than or equal to 22.6\%, where SPPR5 and its associated Damping Factor are calculated as follows:

Peak Rotor Angle of 6th Positive Peak minus Minimum Value


Peak Rotor Angle of 1st Positive Peakminus Minimum Value
Da mping Factor $\%=(1-$ SPPR5 $) \times 100 \% \geq 22.6 \%$
Transient voltage stability - Voltage was monitored at all OPPD generator buses, all OPPD buses 69 kV and above, generator buses in the areas monitored for rotor angle as listed above. The voltage responses were judged against the $0.70<$ Vtransient $\leq 1.20$ p.u. criteria, as described in the SPP Disturbance Performance Requirements and restated below. Those units that violate the transient voltage criteria were marked for further analysis. (TPL-001-4 requirement R5)

- After a disturbance is cleared, bus voltages on the Bulk Electric System shall recover above 0.70 per unit, 2.5 seconds after the fault is cleared. Bus voltages shall not swing above 1.20 per unit after the fault is cleared, unless affected transmission system elements are designed to handle the rise above 1.2 per unit.

Protection System Operation - The analysis simulated the removal of all elements that the Protection System and other automatic controls are expected to disconnect for each contingency without operator intervention. This was accomplished by defining all appropriate actions in PSAS files that were run for each event. The analysis considered the impacts of high speed reclosing, tripping of generators when bus voltages or high side of the GSU voltages are less than known or assumed generator low voltage ride through capability, and tripping of transmission lines or transformers where transient swings cause Protection System operation. PSS/E system-wide monitoring models were used as a way to quickly scan for transmission lines or generators that may be impacted by the transient swings caused by a disturbance. PSS/E activity RELSCN was used to place a generic distance relay model at each end of every circuit. The model uses relay characteristics that are based on percentages of line impedance. PSS/E activity OSSCAN was also used and places a generic out-of-step relay at the end of every circuit to monitor for instances where apparent impedance is less than line impedance. Results were reviewed for instances where either RELSCN or OSSCAN flagged transient conditions. These were reviewed to determine whether subsequent tripping was required. If it was determined subsequent tripping was warranted, then this action was defined in the PSAS file for the event and the event was re-run.

Generator Low Voltage Ride Through - To simulate protection system responses to abnormal voltage conditions, OPPD reviewed generator voltage protective relay settings using PRC-024-2, Attachment 2 as a guideline and developed appropriate dynamic relay models for those units
with generator voltage protective relaying. Additionally, OPPD post-processed disturbance results to look for any instances where generator bus voltages or GSU high side bus voltages lie in the allowable tripping region (either above or below the 'No Trip Zone' in Attachment 2 of PRC-024-2) per the high and low voltage ride through duration criteria listed in PRC-024-2, Attachment 2. These instances were flagged and examined further to determine if additional actions would occur based on in-service protection systems.

Cascading - Potential cascading due to a disturbance was evaluated for NERCPlanning Events (category P1-P7) and Extreme Events to check for the uncontrolled successive loss of system elements. OPPD's evaluation of disturbances that have the potential to cause cascading is meant to identify those situations where unrestrained electric service interruption cannot be prevented from spreading. Simulation results were scanned for instances where units exhibit instability as evidenced by a loss of synchronism or violation of voltage criteria. Simulations are re-run with the unit(s) that exhibited a loss of stability being tripped at an appropriate simulation time. A steady state evaluation is also performed to simulate the outage of elements lost due to the original event and the subsequent tripping events to identify thermal issues that may arise as a result. The stability results are scanned again to look for instances of units that lose synchronism. If any are found, the previous steps are repeated to trip these additional elements. This entire process is repeated until either all units display rotor angle stability, or one of the following cascading criteria are met:

- The disturbance causes more than three iterations of successive instability, tripping, and reviewing following the initial event.
- The accumulated amount of generation lost due to the initial event and subsequent events is greater than 2000 MW . This criterion represents approximately $150 \%$ of OPPD's largest generation site, which is consistent with SPP cascading criteria.

The event is considered to have the potential of causing cascading if one of the above criteria is met. Per requirement R4.5, if an extreme event causes cascading an evaluation of possible actions designed to reduce the likelihood or mitigate the consequences of the event(s) will be conducted.

## Stability Modeling

Stability data was obtained from the SPP supplied PSSE dyr file for the new generation requests. For the Platteview solar addition, it was obtained from the previously performed IGIA IFS.

## Scenarios

The following interconnection scenarios will be evaluated for stability.

1. The new generation stations will be interconnected with minimal new infrastructure.

This scenario closely replicates what is being studied in the SPP generation interconnection studies. This scenario will identify the minimum TPL/FAC required upgrades to support interconnection.
a. Turtle Creek Station (S1363) will interconnect by tapping into the existing S1281-S1362 161kV line resulting in two "new" 161kV circuits.
i. S1281-S1363 (558MVA)
ii. S1362-S1363 (558MVA)
b. Standing Bear Lake Station (S1347) will interconnect by tapping into the existing S1209-S1252 161kV line resulting in two "new" 161kV circuits.
i. S1209-S1347
ii. S1252-S1347
2. The generation stations will be interconnected the same as scenario 1; however, additional system upgrades will also be implemented to improve system reliability and resiliency. These upgrades were previously identified in OPPD sensitivity studies, but are being formally studied here. See Appendix 1 for a local area transmission interconnection map of GEN-2020-025/-028.
a. A second new 161 kv line S1362-S1363 (558MVA)
b. A rebuild of 161 kv line S1281-S1254 (558MVA)
c. A rebuild of 161 kV line S1201-S1206 (377MVA)
d. New 161kV line S1281-S1361 (558MVA)
e. Uprate S1209-S1347 (377MVA)
f. Uprate S1252-S1347 (377MVA)
g. Tap existing 161kV line S1236-S1345 in to substation S1252 to create two "new" circuits.
i. S1236-S1252
ii. S1345-S1252

## Stability Results

Stability without Upgrades (Scenario 1)
The following instabilities were present:

- Loss of angular stability at Nebraska City Units 1 and 2 for an Extreme Event involving 345 kV substation S3458.
- This is an existing base case issue on the OPPD system that is mitigated by the automatic tripping of NC-1 and NC-2. No cascading occurs; therefore, no other mitigation is required.
- Low voltage ride thru issues on the North Omaha Units 2 and 3 auxiliary transformers may cause the units to trip during an Extreme Event at 345 kV substation S3451. No cascading occurs because of this; therefore, no other mitigation is required.

Stability with Upgrades (Scenario 2)
The addition of the previously planned upgrades does not have a significant impact on the stability results.

## SECTION 3: Short Circuit

The intent of the short circuit study is to determine if the interconnection of the new generation causes an increase in available fault current above the ratings of the currently installed circuit breakers on the OPPD Transmission System.

## Modeling

Southwest Power Pool (SPP) Integrated Transmission Planning (ITP) 2022 Short Circuit (BR) models. This will include the 2,5 and 10 year summer peak max fault models.

## Base Model Changes

The Platteview solar installation is an 81MW generation source located at OPPD's 69 kV switchyard S6846. This installation has been granted interim service and therefore will be added to the base model.

## Generation Dispatch

All generation will be placed in service in order to maximize fault current values.

## Short Circuit Simulation

Analysis was performed using the Power System Simulation for Engineering (PSS/E) short circuit function ANSI. These results are then compared to breaker rating to determine whether the circuit breakers have interrupting capability for the faults that they will be expected to interrupt.

## Contingency Selection

A contingency analysis will not be performed for the short circuit analysis. The intact system provides the most paths for fault current to flow, thereby resulting in the worst case. Any circuit breaker loaded greater than $100 \%$ will be identified for replacement.

## Scenarios

Steady State Scenario 1 will not be run for short circuit because Scenario 2 will produce the maximum fault values due to maximized flow paths for fault current.
2. The generation stations will be interconnected the same as scenario 1; however, additional system upgrades will also be implemented to improve system reliability and resiliency. These upgrades were previously identified in OPPD sensitivity studies, but are being formally studied here. See Appendix 1 for a local area transmission interconnection map of GEN-2020-025/-028.
a. A second new 161kv line S1362-S1363 (558MVA)
b. A rebuild of 161 kv line S1281-S1254 (558MVA)
c. A rebuild of 161 kV line S1201-S1206 (377MVA)
d. New 161kV line S1281-S1361 (558MVA)
e. Uprate S1209-S1347 (377MVA)
f. Uprate S1252-S1347 (377MVA)
g. Tap existing 161kV line S1236-S1345 in to substation S1252 to create two "new" circuits.
i. S1236-S1252
ii. S1345-S1252

## Short Circuit Results

No circuit breaker fault duty ratings are exceed with the interconnection of the generating facilities. Fault current results are listed in Appendix 2.

## SECTION 4: MITIGATIONS

This section analyzes the impacts of different facility improvements needed to mitigate the issues on the Transmission System caused by adding the new generating facility.

## Impact of Facility Improvements

The process of identifying improvements to the Transmission System began with a focus on upgradesto the existing facilities in lieu of constructing new facilities.


The following issues required mitigation:

| OVERLOADED FACILITY |  |  |
| :---: | :---: | :---: |
| FROM BUS | TO BUS | MITIGATION |
| S1281 | S1254 | Rebuild the circuit to 558MVA |

As mentioned in the study scenario sections, OPPD is already planning this rebuild of S1281S1254 161kV line to support the interconnection and delivery of these units, and this rebuild was included and evaluated as part of the Scenario 2 upgrade package in each of the aforementioned power flow, stability and short circuit assessments. Therefore, the operating limits determined by SPP in their Interim Interconnection study for GEN-2020-025 and -028 will be resolved and can be removed prior to the units being placed in service.

## SECTION 5: Detailed Cost Estimates and Schedule

Detailed cost estimates have been prepared for the interconnection facilities and any identified network upgrades identified. The prepared cost estimates are Study level estimates $(+20 /-20 \%)$ and assume the implementation of standard OPPD construction and procurement practices. The cost estimates for the interconnection and network upgrades are below:

| SCERT | Titile | Scope | Estimate | In- <br> Service <br> Date |
| :---: | :---: | :---: | :---: | :---: |
| 156388 | S1363 161kV GEN-2020-025 Interconnection | Double Breaker Bay | \$2,292,537 | 8/7/2023 |
| 156389 | S1363 161kV GEN-2020-028 Interconnection | Double Breaker Bay | \$2,292,537 | 8/7/2023 |
| 156390 | S1209-S1252 161kV GEN-2020-043 Interconnection | Double Breaker Bay | \$2,292,537 | 8/7/2023 |
| 156391 | S1209-S1252 161kV GEN-2020-044 Interconnection | Double Breaker Bay | \$2,292,537 | 8/7/2023 |
| 156392 | S1209-S1252 161kV GEN-2020-045 Interconnection | Double Breaker Bay | \$2,292,537 | 8/7/2023 |
| 156393 | S1363 161kV Interconnection Expansion | - S1281-S1363 161kV line Reroute <br> - S1362-S1363 161kV line Reroute <br> - S1363 161kV Switchyard | \$41,063,166 | 8/7/2023 |
| 156394 | S1209-S1252 161kV Line Tap (S1347) | - S1209-S1347 161kV line Reroute <br> - S1252-S1347 161kV line Reroute <br> - S1347 161kV Switchyard | \$27,418,650 | 8/7/2023 |
| N/A | S1254-S1281 Rebuild | Circuit rebuild to 558MVA | N/A* | 8/7/2023 |

*An estimate is not being provided due to this network upgrade not being assigned out of the SPP Interim Generation Interconnection process.

Appendix 1-GEN-2020-025 and GEN-2020-028 Interconnection Map


Appendix 2 -Short Circuit Results

| Sub | Breaker | BasekV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 900 | CB 1 | 69 | 23.00 | 8.44 | 37\% |
| 900 | CB 2 | 69 | 23.00 | 8.44 | 37\% |
| 900 | CB 3 | 69 | 23.00 | 8.44 | 37\% |
| 900 | CB 5 | 69 | 23.00 | 8.44 | 37\% |
| 900 | CB 6 | 69 | 23.00 | 8.44 | 37\% |
| 901 | Cicuit 613 (CB-1) | 69 | 40.00 | 30.29 | 76\% |
| 901 | Circuit 605 (CB-2) | 69 | 40.00 | 30.29 | 76\% |
| 901 | Circuit 601 GT 2 (CB-3) | 69 | 40.00 | 30.29 | 76\% |
| 901 | Circuit 603 (CB-5) | 69 | 40.00 | 30.29 | 76\% |
| 901 | Circuit 615 GT 1 (CB-4) | 69 | 40.00 | 30.29 | 76\% |
| 902 | CB 1 | 69 | 23.00 | 9.56 | 42\% |
| 902 | CB 2 | 69 | 23.00 | 9.56 | 42\% |
| 902 | CB 3 | 69 | 23.00 | 9.56 | 42\% |
| 904 | CB-1 | 69 | 40.00 | 9.14 | 23\% |
| 906 | BT-61 | 69 | 50.00 | 35.08 | 70\% |
| 906 | BT-62 | 69 | 50.00 | 35.08 | 70\% |
| 906 | BT-63 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-621 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-623 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-624 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-625 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-626 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-628 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-629 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-631 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-632 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-633 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-634 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-635 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-636 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-637 | 69 | 50.00 | 35.08 | 70\% |
| 906 | CB-658 | 69 | 50.00 | 35.08 | 70\% |
| 907 | CB-1 | 69 | 40.00 | 20.38 | 51\% |
| 908 | CB-1 | 69 | 35.59 | 19.55 | 55\% |
| 908 | CB-2 | 69 | 35.59 | 19.55 | 55\% |
| 909 | CB-648 | 69 | 50.00 | 28.70 | 57\% |
| 909 | CB-649 | 69 | 50.00 | 28.70 | 57\% |
| 909 | CB-651 | 69 | 40.00 | 28.70 | 72\% |
| 909 | CB-652 | 69 | 50.00 | 28.70 | 57\% |
| 909 | CB-653 | 69 | 50.00 | 28.70 | 57\% |
| 910 | 647 | 69 | 35.59 | 27.23 | 77\% |
| 910 | 613 B | 69 | 35.59 | 27.23 | 77\% |


| Sub | Breaker | BasekV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 910 | 646 B | 69 | 35.59 | 27.23 | 77\% |
| 911 | CB-661 | 69 | 40.00 | 29.51 | 74\% |
| 911 | CB-662 | 69 | 40.00 | 29.51 | 74\% |
| 911 | CB-664 | 69 | 50.00 | 29.51 | 59\% |
| 911 | CB-665 | 69 | 40.00 | 29.51 | 74\% |
| 911 | CB-668 | 69 | 40.00 | 29.51 | 74\% |
| 912 | CB-1 | 69 | 40.00 | 23.23 | 58\% |
| 912 | CB-2 | 69 | 40.00 | 23.23 | 58\% |
| 912 | CB-3 | 69 | 40.00 | 23.23 | 58\% |
| 913 | CB-1 | 69 | 40.00 | 17.64 | 44\% |
| 913 | CB-2 | 69 | 40.00 | 17.64 | 44\% |
| 914 | CB-1 | 69 | 40.00 | 8.05 | 20\% |
| 916 | CB 636 | 69 | 40.00 | 24.34 | 61\% |
| 916 | CB 680 | 69 | 40.00 | 24.34 | 61\% |
| 917 | CB 1 | 69 | 40.00 | 27.18 | 68\% |
| 917 | CB 3 | 69 | 40.00 | 27.18 | 68\% |
| 917 | CB-2 | 69 | 40.00 | 27.18 | 68\% |
| 918 | CB-651 | 69 | 40.00 | 23.71 | 59\% |
| 918 | CB-661D | 69 | 40.00 | 23.71 | 59\% |
| 918 | CB-675B | 69 | 40.00 | 23.71 | 59\% |
| 919 | CB-1 | 69 | 40.00 | 22.91 | 57\% |
| 919 | CB-2 | 69 | 40.00 | 22.91 | 57\% |
| 919 | CB-3 | 69 | 40.00 | 22.91 | 57\% |
| 921 | 640 | 69 | 35.59 | 27.16 | 76\% |
| 921 | 653 | 69 | 35.59 | 27.16 | 76\% |
| 921 | 679 | 69 | 37.20 | 27.16 | 73\% |
| 921 | 680 | 69 | 35.59 | 27.16 | 76\% |
| 923 | CB 3 | 69 | 40.00 | 19.58 | 49\% |
| 923 | CB-1 | 69 | 23.00 | 19.58 | 85\% |
| 923 | CB-2 | 69 | 23.00 | 19.58 | 85\% |
| 924 | CB-1 | 69 | 40.00 | 25.06 | 63\% |
| 928 | CB-1 | 69 | 40.00 | 17.72 | 44\% |
| 930 | CB 1 | 69 | 40.00 | 22.43 | 56\% |
| 930 | CB 2 | 69 | 40.00 | 22.43 | 56\% |
| 938 | CB 2 | 69 | 31.50 | 22.42 | 71\% |
| 938 | CB-1 | 69 | 40.00 | 22.42 | 56\% |
| 939 | CB-1 | 69 | 40.00 | 20.81 | 52\% |
| 939 | CB-2 | 69 | 40.00 | 20.81 | 52\% |
| 940 | 680 | 69 | 40.00 | 21.37 | 53\% |
| 940 | 680-B | 69 | 40.00 | 21.37 | 53\% |
| 942 | CB-1 | 69 | 40.00 | 16.59 | 41\% |
| 942 | CB-2 | 69 | 40.00 | 16.59 | 41\% |
| 960 | CB-20 | 69 | 40.00 | 8.38 | 21\% |


| Sub | Breaker | Base kV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 961 | CB-1 | 69 | 40.00 | 5.17 | 13\% |
| 962 | 682 | 69 | 31.50 | 5.88 | 19\% |
| 962 | 694 | 69 | 31.50 | 5.88 | 19\% |
| 962 | 697 | 69 | 31.50 | 5.88 | 19\% |
| 963 | 683 | 69 | 40.00 | 11.98 | 30\% |
| 963 | 684 | 69 | 40.00 | 11.98 | 30\% |
| 963 | 689 | 69 | 40.00 | 11.98 | 30\% |
| 963 | 690 | 69 | 40.00 | 11.98 | 30\% |
| 968 | CB-1 | 69 | 40.00 | 4.57 | 11\% |
| 968 | CB-2 | 69 | 40.00 | 4.57 | 11\% |
| 970 | CB-1 | 69 | 40.00 | 4.40 | 11\% |
| 971 | 687 | 69 | 40.00 | 4.88 | 12\% |
| 971 | 693 | 69 | 40.00 | 4.88 | 12\% |
| 971 | 694 | 69 | 40.00 | 4.88 | 12\% |
| 972 | CB-1 | 69 | 50.00 | 4.51 | 9\% |
| 974 | CB-602 | 69 | 40.00 | 5.70 | 14\% |
| 974 | CB-604 | 69 | 40.00 | 5.70 | 14\% |
| 975 | CB-21 | 69 | 40.00 | 8.81 | 22\% |
| 975 | CB-22 | 69 | 40.00 | 8.81 | 22\% |
| 975 | CB-23 | 69 | 23.00 | 8.81 | 38\% |
| 975 | CB-24 | 69 | 40.00 | 8.81 | 22\% |
| 976 | CB-1 | 69 | 50.00 | 13.32 | 27\% |
| 982 | CB-1 | 69 | 40.00 | 4.05 | 10\% |
| 983 | CB-1 | 69 | 40.00 | 7.87 | 20\% |
| 984 | CB-1 | 69 | 40.00 | 8.31 | 21\% |
| 985 | CB 2 | 69 | 23.00 | 8.60 | 37\% |
| 985 | CB1 | 69 | 23.00 | 8.60 | 37\% |
| 991 | CB-1 | 69 | 40.00 | 12.98 | 32\% |
| 991 | CB-2 | 69 | 40.00 | 12.98 | 32\% |
| 1201 | CB-1 | 161 | 63.00 | 35.03 | 56\% |
| 1201 | CB-2 | 161 | 63.00 | 35.03 | 56\% |
| 1201 | CB-3 | 161 | 63.00 | 35.03 | 56\% |
| 1201 | CB-4 | 161 | 50.00 | 35.03 | 70\% |
| 1201 | CB-5 | 161 | 63.00 | 35.03 | 56\% |
| 1201 | CB-6 | 161 | 63.00 | 35.03 | 56\% |
| 1201 | CB-7 | 161 | 50.00 | 35.03 | 70\% |
| 1201 | CB-8 | 161 | 50.00 | 35.03 | 70\% |
| 1201 | CB-9 | 161 | 63.00 | 35.03 | 56\% |
| 1206 | CB-10 | 161 | 63.00 | 57.54 | 91\% |
| 1206 | CB-11 | 161 | 63.00 | 57.54 | 91\% |
| 1206 | CB-12 | 161 | 63.00 | 57.54 | 91\% |
| 1206 | CB-13 | 161 | 63.00 | 57.54 | 91\% |
| 1206 | CB-14 | 161 | 63.00 | 57.54 | 91\% |


| Sub | Breaker | Base kV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1206 | CB-15 | 161 | 63.00 | 57.54 | 91\% |
| 1206 | CB-16 | 161 | 63.00 | 57.54 | 91\% |
| 1206 | CB-17 | 161 | 63.00 | 57.54 | 91\% |
| 1206 | CB-18 | 161 | 63.00 | 57.54 | 91\% |
| 1206 | CB-19 | 161 | 63.00 | 57.54 | 91\% |
| 1206 | CB-7 | 161 | 63.00 | 57.54 | 91\% |
| 1206 | CB-8 | 161 | 63.00 | 57.54 | 91\% |
| 1206 | CB-9 | 161 | 63.00 | 57.54 | 91\% |
| 1209 | CB-21 | 161 | 63.00 | 51.77 | 82\% |
| 1209 | CB-22 | 161 | 63.00 | 51.77 | 82\% |
| 1209 | CB-23 | 161 | 63.00 | 51.77 | 82\% |
| 1209 | CB-24 | 161 | 63.00 | 51.77 | 82\% |
| 1209 | CB-25 | 161 | 63.00 | 51.77 | 82\% |
| 1209 | CB-26 | 161 | 63.00 | 51.77 | 82\% |
| 1209 | CB-27 | 161 | 63.00 | 51.77 | 82\% |
| 1209 | CB-28 | 161 | 63.00 | 51.77 | 82\% |
| 1209 | CB-30 | 161 | 63.00 | 51.77 | 82\% |
| 1209 | CB-31 | 161 | 63.00 | 51.77 | 82\% |
| 1209 | CB-32 | 161 | 63.00 | 51.77 | 82\% |
| 1210 | CB-1 | 161 | 50.00 | 29.96 | 60\% |
| 1210 | CB-2 | 161 | 50.00 | 29.96 | 60\% |
| 1210 | CB-676 | 161 | 40.00 | 29.96 | 75\% |
| 1211 | CB 13 | 161 | 45.83 | 43.46 | 95\% |
| 1211 | CB 14 | 161 | 45.83 | 43.46 | 95\% |
| 1211 | CB 16 | 161 | 45.83 | 43.46 | 95\% |
| 1211 | CB 17 | 161 | 45.83 | 43.46 | 95\% |
| 1211 | CB 19 | 161 | 63.00 | 43.46 | 69\% |
| 1211 | CB 20 | 161 | 63.00 | 43.46 | 69\% |
| 1211 | CB 22 | 161 | 45.83 | 43.46 | 95\% |
| 1211 | CB 23 | 161 | 45.83 | 43.46 | 95\% |
| 1211 | CB-15 | 161 | 50.00 | 43.46 | 87\% |
| 1211 | CB-18 | 161 | 50.00 | 43.46 | 87\% |
| 1211 | CB-21 | 161 | 50.00 | 43.46 | 87\% |
| 1211 | CB-24 | 161 | 50.00 | 43.46 | 87\% |
| 1211 | CB-31 | 161 | 50.00 | 43.46 | 87\% |
| 1211 | CB-32 | 161 | 50.00 | 43.46 | 87\% |
| 1211 | CB-33 | 161 | 50.00 | 43.46 | 87\% |
| 1211 | CB-7 | 161 | 50.00 | 43.46 | 87\% |
| 1211 | CB-8 | 161 | 50.00 | 43.46 | 87\% |
| 1211 | CB-9 | 161 | 50.00 | 43.46 | 87\% |
| 1214 | CB-1 | 69 | 40.00 | 12.51 | 31\% |
| 1214 | CB-11 | 69 | 40.00 | 12.51 | 31\% |
| 1214 | CB-12 | 69 | 40.00 | 12.51 | 31\% |


| Sub | Breaker | Base kV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1214 | CB-13 | 69 | 40.00 | 12.51 | 31\% |
| 1214 | CB-14 | 161 | 40.00 | 12.79 | 32\% |
| 1214 | CB-2 | 161 | 40.00 | 12.79 | 32\% |
| 1214 | CB-3 | 161 | 40.00 | 12.79 | 32\% |
| 1216 | CB-1 | 161 | 50.00 | 32.38 | 65\% |
| 1217 | CB-11 | 161 | 50.00 | 35.41 | 71\% |
| 1217 | CB-1579 | 161 | 50.00 | 35.41 | 71\% |
| 1217 | CB-1580 | 161 | 50.00 | 35.41 | 71\% |
| 1217 | CB-1619 | 161 | 50.00 | 35.41 | 71\% |
| 1220 | CB-1 | 161 | 50.00 | 31.21 | 62\% |
| 1221 | 1541 | 161 | 40.00 | 36.75 | 92\% |
| 1221 | CB-1550 | 161 | 63.00 | 36.75 | 58\% |
| 1222 | CB 1 | 161 | 40.00 | 29.55 | 74\% |
| 1226 | CB 1 | 161 | 50.00 | 26.03 | 52\% |
| 1226 | CB 3 | 161 | 50.00 | 26.03 | 52\% |
| 1226 | CB 4 | 161 | 50.00 | 26.03 | 52\% |
| 1226 | CB 5 | 161 | 50.00 | 26.03 | 52\% |
| 1226 | CB 6 | 161 | 50.00 | 26.03 | 52\% |
| 1226 | CB 7 | 161 | 50.00 | 26.03 | 52\% |
| 1226 | CB 8 | 161 | 50.00 | 26.03 | 52\% |
| 1226 | CB 9 | 161 | 50.00 | 26.03 | 52\% |
| 1226 | CB-2 | 161 | 63.00 | 26.03 | 41\% |
| 1227 | CB-1 | 161 | 50.00 | 34.29 | 69\% |
| 1229 | CB 1 | 161 | 45.83 | 31.18 | 68\% |
| 1231 | CB 1 | 161 | 45.83 | 45.35 | 99\% |
| 1231 | CB 2 | 161 | 45.83 | 45.35 | 99\% |
| 1231 | CB 4 | 161 | 45.83 | 45.35 | 99\% |
| 1231 | CB 6 | 161 | 45.83 | 45.35 | 99\% |
| 1231 | CB-3 | 161 | 63.00 | 45.35 | 72\% |
| 1231 | CB-7 | 161 | 50.00 | 45.35 | 91\% |
| 1231 | CB-8 | 161 | 50.00 | 45.35 | 91\% |
| 1231 | CB-9 | 161 | 50.00 | 45.35 | 91\% |
| 1232 | CB-1 | 161 | 50.00 | 27.75 | 56\% |
| 1233 | CB-1 | 161 | 50.00 | 29.99 | 60\% |
| 1234 | CB-1 | 161 | 40.00 | 27.56 | 69\% |
| 1234 | CB-2 | 161 | 50.00 | 27.56 | 55\% |
| 1235 | CB-1 | 161 | 50.00 | 35.22 | 70\% |
| 1235 | CB-2 | 161 | 50.00 | 35.22 | 70\% |
| 1235 | CB-3 | 161 | 50.00 | 35.22 | 70\% |
| 1235 | CB-4 | 161 | 50.00 | 35.22 | 70\% |
| 1236 | CB 1 | 161 | 40.00 | 25.30 | 63\% |
| 1237 | CB-1 | 161 | 50.00 | 22.63 | 45\% |
| 1237 | CB-2 | 161 | 50.00 | 22.63 | 45\% |


| Sub | Breaker | Base kV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1237 | CB-3 | 161 | 50.00 | 22.63 | 45\% |
| 1244 | CB-1 | 161 | 40.00 | 23.23 | 58\% |
| 1244 | CB-2 | 161 | 50.00 | 23.23 | 46\% |
| 1249 | CB 1 | 161 | 40.00 | 25.41 | 64\% |
| 1250 | CB 2 | 69 | 50.00 | 23.84 | 48\% |
| 1250 | CB 3 | 161 | 50.00 | 39.09 | 78\% |
| 1250 | CB 4 | 161 | 50.00 | 39.09 | 78\% |
| 1250 | CB 5 | 161 | 50.00 | 39.09 | 78\% |
| 1250 | CB-1 | 161 | 63.00 | 39.09 | 62\% |
| 1250 | CB-11 | 161 | 40.00 | 39.09 | 98\% |
| 1250 | CB-6 | 161 | 63.00 | 39.09 | 62\% |
| 1251 | CB-104 | 161 | 50.00 | 35.66 | 71\% |
| 1251 | CB-105 | 161 | 50.00 | 35.66 | 71\% |
| 1251 | CB-106 | 161 | 50.00 | 35.66 | 71\% |
| 1251 | CB-107 | 161 | 50.00 | 35.66 | 71\% |
| 1251 | CB-108 | 161 | 50.00 | 35.66 | 71\% |
| 1251 | CB-109 | 161 | 50.00 | 35.66 | 71\% |
| 1251 | CB-110 | 161 | 50.00 | 35.66 | 71\% |
| 1251 | CB-111 | 161 | 50.00 | 35.66 | 71\% |
| 1251 | CB-112 | 161 | 50.00 | 35.66 | 71\% |
| 1252 | CB-1 | 161 | 40.00 | 31.17 | 78\% |
| 1253 | CB-21 | 161 | 50.00 | 28.36 | 57\% |
| 1253 | CB-22 | 161 | 40.00 | 28.36 | 71\% |
| 1253 | CB-23 | 161 | 50.00 | 28.36 | 57\% |
| 1253 | CB-25 | 161 | 63.00 | 28.36 | 45\% |
| 1254 | CB-11 | 161 | 50.00 | 34.18 | 68\% |
| 1254 | CB-12 | 161 | 50.00 | 34.18 | 68\% |
| 1254 | CB-13 | 161 | 63.00 | 34.18 | 54\% |
| 1254 | CB-14 | 161 | 63.00 | 34.18 | 54\% |
| 1254 | CB-15 | 161 | 63.00 | 34.18 | 54\% |
| 1255 | CB-21 | 161 | 63.00 | 52.12 | 83\% |
| 1255 | CB-22 | 161 | 63.00 | 52.12 | 83\% |
| 1255 | CB-23 | 161 | 63.00 | 52.12 | 83\% |
| 1255 | CB-25 | 161 | 63.00 | 52.12 | 83\% |
| 1255 | CB-26 | 161 | 63.00 | 52.12 | 83\% |
| 1255 | CB-27 | 161 | 63.00 | 52.12 | 83\% |
| 1255 | CB-28 | 161 | 63.00 | 52.12 | 83\% |
| 1255 | CB-29 | 161 | 63.00 | 52.12 | 83\% |
| 1255 | CB-30 | 161 | 63.00 | 52.12 | 83\% |
| 1255 | CB-32 | 161 | 63.00 | 52.12 | 83\% |
| 1256 | CB-1 | 161 | 50.00 | 23.18 | 46\% |
| 1258 | CB-41 | 161 | 50.00 | 6.14 | 12\% |
| 1258 | CB-42 | 161 | 50.00 | 6.14 | 12\% |


| Sub | Breaker | Base kV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1258 | CB-44 | 161 | 50.00 | 6.14 | 12\% |
| 1258 | CB-45 | 161 | 50.00 | 6.14 | 12\% |
| 1258 | CB-46 | 161 | 50.00 | 6.14 | 12\% |
| 1258 | CB-48 | 161 | 50.00 | 6.14 | 12\% |
| 1258 | CB-49 | 161 | 50.00 | 6.14 | 12\% |
| 1259 | CB-1 | 161 | 63.00 | 38.96 | 62\% |
| 1259 | CB-2 | 161 | 63.00 | 38.96 | 62\% |
| 1259 | CB-3 | 161 | 63.00 | 38.96 | 62\% |
| 1259 | CB-4 | 161 | 63.00 | 38.96 | 62\% |
| 1260 | CB-1 | 161 | 40.00 | 39.20 | 98\% |
| 1260 | CB-10 | 161 | 63.00 | 39.20 | 62\% |
| 1260 | CB-11 | 161 | 63.00 | 39.20 | 62\% |
| 1260 | CB-12 | 161 | 63.00 | 39.20 | 62\% |
| 1260 | CB-13 | 161 | 63.00 | 39.20 | 62\% |
| 1260 | CB-2 | 161 | 63.00 | 39.20 | 62\% |
| 1260 | CB-3 | 161 | 63.00 | 39.20 | 62\% |
| 1260 | CB-4 | 161 | 63.00 | 39.20 | 62\% |
| 1260 | CB-5 | 161 | 63.00 | 39.20 | 62\% |
| 1260 | CB-6 | 161 | 63.00 | 39.20 | 62\% |
| 1260 | CB-7 | 161 | 63.00 | 39.20 | 62\% |
| 1260 | CB-8 | 161 | 63.00 | 39.20 | 62\% |
| 1260 | CB-9 | 161 | 63.00 | 39.20 | 62\% |
| 1263 | CB-1 | 161 | 40.00 | 8.67 | 22\% |
| 1263 | CB-11 | 161 | 40.00 | 8.67 | 22\% |
| 1263 | CB-12 | 161 | 40.00 | 8.67 | 22\% |
| 1263 | CB-2 | 161 | 40.00 | 8.67 | 22\% |
| 1263 | CB-3 | 161 | 40.00 | 8.67 | 22\% |
| 1278 | CB-1 | 161 | 50.00 | 28.10 | 56\% |
| 1280 | CB-1 | 161 | 50.00 | 10.83 | 22\% |
| 1280 | CB-2 | 161 | 50.00 | 10.83 | 22\% |
| 1280 | CB-3 | 161 | 50.00 | 10.83 | 22\% |
| 1281 | CB 1 | 161 | 40.00 | 35.41 | 89\% |
| 1281 | CB 2 | 161 | 40.00 | 35.41 | 89\% |
| 1286 | CB-1 | 161 | 40.00 | 29.00 | 73\% |
| 1287 | CB-1 | 161 | 63.00 | 22.00 | 35\% |
| 1291 | CB-21 | 161 | 40.00 | 7.26 | 18\% |
| 1298 | CB-1 | 161 | 40.00 | 31.33 | 78\% |
| 1298 | CB-2 | 161 | 50.00 | 31.33 | 63\% |
| 1298 | CB-3 | 161 | 50.00 | 31.33 | 63\% |
| 1298 | CB-4 | 161 | 50.00 | 31.33 | 63\% |
| 1299 | CB-1 | 161 | 50.00 | 30.74 | 61\% |
| 1305 | CB-1 | 161 | 50.00 | 29.63 | 59\% |
| 1305 | CB-2 | 161 | 50.00 | 29.63 | 59\% |


| Sub | Breaker | BasekV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1341 | CB-1 | 161 | 50.00 | 28.79 | 58\% |
| 1345 | CB-1 | 161 | 50.00 | 23.46 | 47\% |
| 1361 | CB-23 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-24 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-25 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-27 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-28 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-30 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-31 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-32 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-33 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-34 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-35 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-36 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-37 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-38 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-39 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-40 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-41 | 161 | 63.00 | 41.98 | 67\% |
| 1361 | CB-42 | 161 | 63.00 | 41.98 | 67\% |
| 1362 | All | 161 | 63.00 | 34.42 | 55\% |
| 1366 | CB-1 | 161 | 40.00 | 16.97 | 42\% |
| 1366 | CB-2 | 161 | 40.00 | 16.97 | 42\% |
| 1367 | CB-1 | 161 | 40.00 | 22.35 | 56\% |
| 1399 | CB-1 | 161 | 50.00 | 7.10 | 14\% |
| 1399 | CB-2 | 161 | 50.00 | 7.10 | 14\% |
| 1399 | CB-3 | 161 | 50.00 | 7.10 | 14\% |
| 3451 | CB 1 A PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 1 B PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 1 C PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 10 A PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 10 B PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 10 CPHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 11 A PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 11 B PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 11 CPHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 12 A PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 12 B PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 12 CPHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 2 A PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 2 B PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 2 C PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 3 A PHASE | 345 | 40.00 | 24.94 | 62\% |


| Sub | Breaker | Base kV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3451 | CB 3 B PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 3 C PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 4 A PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 4 B PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 4 C PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 5 A PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 5 B PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 5 C PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 6 A PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 6 B PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3451 | CB 6 C PHASE | 345 | 40.00 | 24.94 | 62\% |
| 3454 | CB 1 A PHASE | 345 | 40.00 | 28.47 | 71\% |
| 3454 | CB 1 B PHASE | 345 | 40.00 | 28.47 | 71\% |
| 3454 | CB 1 C PHASE | 345 | 40.00 | 28.47 | 71\% |
| 3454 | CB 2 A PHASE | 345 | 40.00 | 28.47 | 71\% |
| 3454 | CB 2 B PHASE | 345 | 40.00 | 28.47 | 71\% |
| 3454 | CB 2 C PHASE | 345 | 40.00 | 28.47 | 71\% |
| 3454 | CB 3 A Phase | 345 | 40.00 | 28.47 | 71\% |
| 3454 | CB 3 B Phase | 345 | 40.00 | 28.47 | 71\% |
| 3454 | CB 3 C Phase | 345 | 40.00 | 28.47 | 71\% |
| 3454 | CB 6 A PHASE | 345 | 40.00 | 28.47 | 71\% |
| 3454 | CB 6 B PHASE | 345 | 40.00 | 28.47 | 71\% |
| 3454 | CB 6 C PHASE | 345 | 40.00 | 28.47 | 71\% |
| 3455 | CB 1 A Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 1 B Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 1 C Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 10 A Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 10 B Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 10 C Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 11 A Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 11 B Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 11 C Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 12 A Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 12 B Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 12 C Phase | 345 | 40.00 | 33.85 | 85\% |
| 3455 | CB 2 A Phase | 345 | 50.00 | 33.85 | 68\% |
| 3455 | CB 2 B Phase | 345 | 50.00 | 33.85 | 68\% |
| 3455 | CB 2 C Phase | 345 | 50.00 | 33.85 | 68\% |
| 3455 | CB 3 A Phase | 345 | 50.00 | 33.85 | 68\% |
| 3455 | CB 3 B Phase | 345 | 50.00 | 33.85 | 68\% |
| 3455 | CB 3 C Phase | 345 | 50.00 | 33.85 | 68\% |
| 3455 | CB 5 | 345 | 50.00 | 33.85 | 68\% |
| 3455 | CB 6 A Phase | 345 | 50.00 | 33.85 | 68\% |


| Sub | Breaker | BasekV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3455 | CB 6 B Phase | 345 | 50.00 | 33.85 | 68\% |
| 3455 | CB 6 C Phase | 345 | 50.00 | 33.85 | 68\% |
| 3455 | CB-7 A Phase | 345 | 63.00 | 33.85 | 54\% |
| 3455 | CB-7 B Phase | 345 | 63.00 | 33.85 | 54\% |
| 3455 | CB-7 C Phase | 345 | 63.00 | 33.85 | 54\% |
| 3455 | CB-9 A Phase | 345 | 63.00 | 33.85 | 54\% |
| 3455 | CB-9 B Phase | 345 | 63.00 | 33.85 | 54\% |
| 3455 | CB-9 C Phase | 345 | 63.00 | 33.85 | 54\% |
| 3456 | CB 1 A Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 1 B Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 1 C Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 2 A Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 2 B Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 2 C Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 3 A Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 3 B Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 3 C Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 4 A Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 4 B Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 4 C Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 5 A Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 5 B Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 5 C Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 6 A Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 6 B Phase | 345 | 50.00 | 38.09 | 76\% |
| 3456 | CB 6 C Phase | 345 | 50.00 | 38.09 | 76\% |
| 3458 | CB 1 A Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 1 B Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 1 C Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 10 A Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 10 B Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 10 C Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 12 A Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 12 B Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 12 C Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 16 A Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 16 B Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 16 C Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 18 A Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 18 B Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 18 C Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 23 A Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 23 B Phase | 345 | 50.00 | 33.24 | 66\% |


| Sub | Breaker | Base kV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3458 | CB 23 C Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 24 A Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 24 B Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 24 C Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 25 A Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 25 B Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB 25 C Phase | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-19 - A PHASE, POLE 1 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-19-B PHASE, POLE 2 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-19-C PHASE, POLE 3 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-21-A PHASE, POLE 1 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-21-B PHASE, POLE 2 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-21-C PHASE, POLE 3 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-27-A PHASE, POLE 1 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-27-B PHASE, POLE 2 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-27-C PHASE, POLE 3 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-3 - A PHASE, POLE 1 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-3 - B PHASE, POLE 2 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-3-C PHASE, POLE 3 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-4 - A PHASE, POLE 1 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-4 - B PHASE, POLE 2 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-4-C PHASE, POLE 3 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-6 - A PHASE, POLE 1 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-6 - B PHASE, POLE 2 | 345 | 50.00 | 33.24 | 66\% |
| 3458 | CB-6-C PHASE, POLE 3 | 345 | 50.00 | 33.24 | 66\% |
| 3459 | CB 1 A Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 1 B Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 1 C Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 2 A Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 2 B Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 2 C Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 3 A Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 3 B Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 3 C Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 4 A Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 4 B Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 4 C Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 5 A Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 5 B Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 5 C Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB 6 A Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB6 B Phase | 345 | 50.00 | 27.51 | 55\% |
| 3459 | CB6 C Phase | 345 | 50.00 | 27.51 | 55\% |


| Sub | Breaker | Base kV | Final Interupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3740 | CB 2 A Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 2 B Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 2 C Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 3 A Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 3 B Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 3 C Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 4 A Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 4 B Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 4 C Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 5 A Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 5 B Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 5 C Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 6 A Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 6 B Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 6 C Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 7 A Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 7 B Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 7 C Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 8 A Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 8 B Phase | 345 | 50.00 | 20.09 | 40\% |
| 3740 | CB 8 C Phase | 345 | 50.00 | 20.09 | 40\% |
| 3761 | CB-2 A Phase | 345 | 63.00 | 23.88 | 38\% |
| 3761 | CB-2 B Phase | 345 | 63.00 | 23.88 | 38\% |
| 3761 | CB-2 C Phase | 345 | 63.00 | 23.88 | 38\% |
| 6815 | CB-1 | 69 | 40.00 | 12.80 | 32\% |
| 6815 | CB-2 | 69 | 40.00 | 12.80 | 32\% |
| 6846 | CB-1 | 69 | 40.00 | 8.31 | 21\% |
| 6866 | CB-11 | 69 | 40.00 | 21.34 | 53\% |
| 6866 | CB-12 | 69 | 40.00 | 21.34 | 53\% |
| 6874 | CB-1 | 69 | 29.85 | 8.54 | 29\% |
| 6874 | CB-2 | 69 | 29.85 | 8.54 | 29\% |
| NCU 903 | CB 683 | 69 | 40.00 | 6.40 | 16\% |
| $\begin{aligned} & \text { NCU } \\ & 903 \end{aligned}$ | CB 697 | 69 | 40.00 | 6.40 | 16\% |

Appendix 3 - Stability Events

| Previous Event ID | Category | Fault Type | Bus Name | Voltage (kV) | Number | R | X | Units | Run For Cycles/ Set Scale (MW, Max, Min) | Action | Element | From Bus | To Bus | Tertiary Bus | Circuit ID | Clear Fault | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | P1_2 | 3PH | S3458 3 | 345.00 | 645458 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 640139 |  | 1 | Yes | 3-PH fault at S3458 on S3458Cooper. Normal clearing. |
| 2 | P1_2 | 3PH | S3740 3 | 345.00 | 645740 |  |  |  | 5 | Open | Transmission Circuit | 645455 | 645740 |  | 1 | Yes | $\quad$ 3-PH fault at S3740 on S3455-S3740. Normal clearing with unsuccessful reclosing. |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S3455 3 | 345.00 | 645455 | 932 | 10192 | MVA | 7.5 |  |  |  |  |  |  | Yes |  |
| 3 | P1_2 | 3PH | S1206 5 | 161.00 | 646206 |  |  |  | 9 | Open | Transmission Circuit | 646206 | 646232 |  | 1 | Yes | $\quad$ 3-PH fault at S1206 on S1206-S1232. Normal clearing with unsuccessful reclosing. |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646232 |  |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S1232 5 | 161.00 | 646232 | 1434 | 9156 | MVA | 11.5 |  |  |  |  |  |  | Yes |  |
| 4 | P1_2 | 3PH | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 646220 |  | 1 | Yes | 3-PH fault <br> at S1211 on <br> S1211-S1220. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646220 |  |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S1220 5 | 161.00 | 646220 | 1162 | 7458 | MVA | 8.5 |  |  |  |  |  |  | Yes |  |
| 5 | P1_2 | 3PH | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 646299 |  | 1 | Yes | $\quad$ 3-PH fault at S1211 on S1211-S1299. Normal clearing with |

Page 29 of 52

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | unsuccessful reclosing. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646299 |  |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S1299 5 | 161.00 | 646299 | 2872 | $18493$ | MVA | 8.5 |  |  |  |  |  |  | Yes |  |
| 6 | P1_2 | 3PH | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 646250 |  | 2 | Yes | 3-PH fault <br> at S1211 on <br> S1211-S1250 <br> Cir 1520. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646211 |  |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S1250 5 | 161.00 | 646250 | 1454 | $9334$ | MVA | 8.5 |  |  |  |  |  |  | Yes |  |
| 7 | P1_3 | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 7.5 | Open | Three Winding | 645451 | 646251 | 648251 | 1 | Yes | $\quad$ 3-PH fault at S3451 on S3451 T3 transformer. Normal clearing. |
| 8 | P2_2 | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-G } \end{array}$ | S1217 5 | 161.00 | 646217 |  |  |  | 8.5 | Open | Trip Bus | 646217 |  |  |  | Yes | SLG Fault at S1217 on 161-kV bus. Normal clearing. |
| 9 | P3_2 |  |  |  |  |  |  |  |  | Prior Outage | Generator | 635024 |  |  | 4 |  | Prior outage of Council Bluffs Unit 4. 3-PH fault at S3458 on S3458S3456. Normal clearing with unsuccessful reclosing. |
|  |  | 3PH | S3458 3 | 345.00 | 645458 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 645456 |  | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S3456 3 | 345.00 | 645456 | 411 | 4361 | MVA | 7.5 |  |  |  |  |  |  | Yes |  |
| 10 | P3_2 |  |  |  |  |  |  |  |  | Prior Outage | Generator | 635024 |  |  | 4 |  | Prior outage of Council Bluffs Unit 4. 3-PH fault at S3456 on S3458S3456. Normal clearing with |

Page 30 of 52

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | unsuccessful reclosing. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3 PH | S3456 3 | 345.00 | 645456 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 645456 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  |  | 3PH | S3456 3 | 345.00 | 645456 |  |  |  | 4.5 |  |  |  |  |  | Yes |  |
| 11 | P3_2 |  |  |  |  |  |  |  |  | $\begin{gathered} \text { Prior } \\ \text { Outage } \end{gathered}$ | Generator | 635024 |  | 4 |  | Prior outage of Council Bluffs Unit 4. 3-PH fault at S3451 <br> on S3451S3459. <br> Normal clearing with unsuccessful reclosing. |
|  |  | 3 PH | S3451 3 | 345.00 | 645451 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645459 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645451 | 645459 | 1 |  |  |
|  |  | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 4.5 | Open | Transmission Circuit | 645451 | 645459 | 1 | Yes |  |
|  |  | SLG | S3459 3 | 345.00 | 645459 | 994 | $11394$ | MVA | 3 |  |  |  |  |  | Yes |  |
| 12 | P3_2 |  |  |  |  |  |  |  |  | $\begin{gathered} \text { Prior } \\ \text { Outage } \end{gathered}$ | Generator | 635024 |  | 4 |  | Prior outage of Council Bluffs Unit 4. 3-PH fault at S3451 on S3451S3459. <br> Normal clearing with successful reclosing. |
|  |  | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 5 | Open | $\qquad$ | 645451 | 645459 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645451 | 645459 | 1 |  |  |
| 13 | P3_2 |  |  |  |  |  |  |  |  | Prior Outage | Generator | 635024 |  | 4 |  | Prior outage of Council Bluffs Unit 4. 3-PH fault at S3459 on S3451S3459. <br> Normal clearing with unsuccessful reclosing. |
|  |  | 3PH | S3459 3 | 345.00 | 645459 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645459 | 1 | Yes |  |


|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645451 | 645459 |  | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3PH | S3459 3 | 345.00 | 645459 |  |  |  | 4.5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |  |
|  |  | SLG | S3451 3 | 345.00 | 645451 | 994 | 11394 | MVA | 3 |  |  |  |  |  |  | Yes |  |
| 14 | P3_2 |  |  |  |  |  |  |  |  | $\begin{gathered} \text { Prior } \\ \text { Outage } \end{gathered}$ | Generator | 635024 |  |  | 4 |  | Prior outage of Council Bluffs Unit 4. 3-PH fault at S3459 on S3451S3459. Normal clearing with successful reclosing. |
|  |  | 3PH | S3459 3 | 345.00 | 645459 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645451 | 645459 |  | 1 |  |  |
| 15 | P4_2 | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-G } \end{array}$ | S3451 3 | 345.00 | 645451 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645551 |  | Z1 |  | SLG Fault <br> at S3451 on <br> S3451-Raun <br> followed by a <br> stuck breaker <br> opening <br> S3451 T4. <br> Delayed <br> clearing. |
|  |  |  |  |  |  |  |  |  | 0 | Open | Transmission Circuit | 645551 | 635200 |  | 1 | Yes |  |
|  |  | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-G } \\ \hline \end{array}$ | S3451 3 | 345.00 | 645451 |  |  |  | 9.5 | Open | Three Winding | 645451 | 646251 | 648351 | 1 | Yes |  |
| 16 | P4_2 | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-G } \end{array}$ | S3454 3 | 345.00 | 645454 |  |  |  | 5 | Open | Transmission Circuit | 645454 | 650185 |  | 1 | Yes | SLG Fault <br> at S3454 on <br> S3454- <br> Wagener <br> followed by a <br> stuck breaker <br> opening <br> S3454-S3455. <br> Delayed <br> clearing. |
|  |  | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-G } \end{array}$ | S3454 3 | 345.00 | 645454 |  |  |  | 9 | Open | Transmission Circuit | 645454 | 645455 |  | 1 | Yes |  |
| 17 | P4_2 | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-G } \end{array}$ | S3458 3 | 345.00 | 645458 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 640139 |  | 1 | Yes | SLG Fault <br> at S3458 on <br> S3458-Cooper <br> followed by a <br> stuck breaker <br> opening the <br> west bus. |



Page 33 of 52

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Cooper. <br> 3-PH fault at <br> S3740 on <br> S3455-S3740. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3PH | S3740 3 | 345.00 | 645740 |  |  |  | 5 | Open | Transmission Circuit | 645455 | 645740 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  |  | SLG | S3455 3 | 345.00 | 645455 | 932 | 10192 | MVA | 7.5 |  |  |  |  |  | Yes |  |
| 25 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646211 | 646220 | 1 |  | $\quad$ Prior outage of S1211-S1220. 3-PH fault at S1211 on S1211-S1299. Normal clearing with unsuccessful reclosing. |
|  |  | 3PH | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 646299 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646299 |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  |  | SLG | S1299 5 | 161.00 | 646299 | 2872 | 18493 | MVA | 8.5 |  |  |  |  |  | Yes |  |
| 26 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645454 | 645451 | 1 |  | Prior outage of S3454-S3451. <br> 3-PH fault at S3454 on S3454-S3455. Normal clearing with unsuccessful reclosing. |
|  |  | 3PH | S3454 3 | 345.00 | 645454 |  |  |  | 5 | Open | Transmission Circuit | 645454 | 645455 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645454 | 645455 | 1 |  |  |
|  |  | 3PH | S3454 3 | 345.00 | 645454 |  |  |  | 4.5 | Open | Transmission Circuit | 645454 | 645455 | 1 | Yes |  |
|  |  | SLG | S3455 3 | 345.00 | 645455 | 2782 | 31399 | MVA | 3 |  |  |  |  |  | Yes |  |
| 27 | P6_1_1 |  |  |  |  |  |  |  |  | $\begin{array}{\|c} \hline \text { Prior } \\ \text { Outage } \end{array}$ | Transmission Circuit | 645454 | 645451 | 1 |  |  |

Page 34 of 52

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | clearing with successful reclosing. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3PH | S3454 3 | 345.00 | 645454 |  |  |  | 5 | Open | Transmission Circuit | 645454 | 645455 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645454 | 645455 | 1 |  |  |
| 28 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645454 | 645455 | 1-1 |  | Prior outage of S3454-S3455. 3-PH fault at S3455 on S3455-S3456. Normal clearing with unsuccessful reclosing. |
|  |  | 3PH | S3455 3 | 345.00 | 645455 |  |  |  | 5 | Open | Transmission Circuit | 645455 | 645456 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645455 | 645456 | 1 |  |  |
|  |  | 3PH | S3455 3 | 345.00 | 645455 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645456 | 1 | Yes |  |
|  |  | SLG | S3456 3 | 345.00 | 645456 | 2687 | 32674 | MVA | 3 |  |  |  |  |  | Yes |  |
| 29 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645454 | 645455 | 1 |  |  |
|  |  | 3PH | S3455 3 | 345.00 | 645455 |  |  |  | 5 | Open | Transmission <br> Circuit | 645455 | 645456 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645455 | 645456 | 1 |  |  |
| 30 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 640139 | 300039 | 1 |  | Prior outage of CooperFairport. 3PH fault at Cooper on Cooper-St. Joe. Normal clearing. |
|  |  | 3PH | $3^{\text {COOPER }}$ | 345.00 | 640139 |  |  |  | 4.5 | Open | Transmission Circuit | 640139 | 541199 | 1 | Yes |  |
| 31 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645458 | 650189 | 1 |  | Prior outage of S3458103rd\&Rokeb |

Page 35 of 52

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | y. 3-PH fault at S3458 on S3458-S3456. <br> Normal clearing with unsuccessful reclosing. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3PH | S3458 3 | 345.00 | 645458 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 645456 |  | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S3456 3 | 345.00 | 645456 | 411 | 4361 | MVA | 7.5 |  |  |  |  |  |  | Yes |  |
| 32 | P6_1_2 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645451 | 645551 |  | Z1 |  | Prior <br> outage of <br> S3451-Raun. <br> 3-PH fault at <br> S3451 on T3 <br> transformer. <br> Normal <br> clearing. |
|  |  |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645551 | 635200 |  | 1 |  |  |
|  |  | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 7.5 | Open | Three Winding | 645451 | 646251 | 648251 | 1 | Yes |  |
| 33 | P6_2_1 |  |  |  |  |  |  |  |  | Prior Outage | Three Winding | 645456 | 646206 | 648256 | 1 |  | Prior <br> outage of <br> S3456 T4. <br> 3-PH fault at <br> S1206 on <br> S1201-S1206. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  | 3PH | S1206 5 | 161.00 | 646206 |  |  |  | 9 | Open | Transmission Circuit | 646206 | 646201 |  | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646206 |  |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S12015 | 161.00 | 646201 | 589 | 4038 | MVA | 11.5 |  |  |  |  |  |  | Yes |  |
| 34 | P7_1 | $\begin{gathered} \hline \text { SCMU } \\ \text { L-L-G } \end{gathered}$ | S3451 3 | 345.00 | 645451 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes | DLG Fault <br> at S3451 on <br> S3451-S3459 <br> and S3451- <br> S3454. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 0 20 | Open <br> Close | Transmission Circuit <br> Transmission Circuit | $\begin{aligned} & \hline 645451 \\ & 645451 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 645454 \\ & 645459 \\ & \hline \end{aligned}$ |  | 1 1 |  |  |


|  |  |  |  |  |  |  |  |  | 0 | Close | Transmission Circuit | 645451 | 645454 | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-L-G } \end{array}$ | S3451 3 | 345.00 | 645451 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645459 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 0 | Open | Transmission Circuit | 645451 | 645454 | 1 |  |  |
| 35 | P7_1 | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-L-G } \end{array}$ | S3451 3 | 345.00 | 645451 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645459 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 0 | Open | Transmission Circuit | 645451 | 645454 | 1 |  |  |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645451 | 645459 | 1 |  |  |
|  |  |  |  |  |  |  |  |  | 0 | Close | Transmission Circuit | 645451 | 645454 | 1 |  |  |
| 36 | P7_1 | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-L-G } \end{array}$ | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 646220 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 0 | Open | Transmission Circuit | 646211 | 646299 | 1 |  |  |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646220 |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646299 |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  |  | SLG | S1220 5 | 161.00 | 646220 | 1162 | $7458$ | MVA | 0 |  |  |  |  |  | No |  |
|  |  | SLG | S1299 5 | 161.00 | 646299 | 2872 | 18493 | MVA | 8.5 |  |  |  |  |  | Yes |  |
|  |  |  |  |  |  |  |  |  | 0 |  |  |  |  |  | Yes |  |
| 37 | P7_1 | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-L-G } \end{array}$ | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 646250 | 1 | Yes | DLG Fault <br> at S1211 on <br> S1211-S1250 <br> Cir 1511 and <br> S1211-S1250 <br> Cir 1520. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 0 | Open | Transmission Circuit | 646211 | 646250 | 2 |  |  |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646211 |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646250 |  | 00 |  |  |


|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} \hline \text { SCMU } \\ \hline \text { L-L-G } \end{array}$ | S1250 5 | 161.00 | 646250 |  |  |  | 8.5 |  |  |  |  |  |  | Yes |  |
| 38 | Extreme_2_b | 3PH | S3458 3 | 345.00 | 645458 |  |  |  | $5$ | Open | Transmission Circuit | 645458 | 640139 |  | 1 | Yes | 3-PH fault at S3458 on S3458-Cooper followed by a stuck breaker opening the west bus. Delayed clearing. |
|  |  | 3PH | S3458 3 | 345.00 | 645458 |  |  |  | 8.5 |  |  |  |  |  |  | Yes |  |
| 39 | Extreme_2_c | 3PH | S3451 3 | 345.00 | 645451 |  |  | $0$ | $7.5$ | Open | Three Winding <br> Winding | 645451 | 646251 | 648251 | 1 | Yes | 3-PH fault <br> at S3451 on <br> S3451 T3 <br> transformer <br> followed by a <br> stuck breaker <br> opening <br> S3451-S3459. <br> Delayed <br> clearing. |
|  |  | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 9.5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |  |
| 40 | Extreme_2_f |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645451 | 645551 |  | Z1 |  | Prior outage of S3451- <br> Raun. <br> SLG fault at <br> S3451 on <br> 3451 T3 <br> transformer <br> followed by a <br> stuck breaker <br> opening <br> S3451-S3459. <br> Delayed <br> clearing. |
|  |  |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645551 | 635200 |  | 1 |  |  |
|  |  | $\begin{array}{r} \hline \text { SCMU } \\ \hline \end{array}$ | S3451 3 | 345.00 | 645451 |  |  |  | 7.5 | Open | Three Winding | 645451 | 646251 | 648251 | 1 | Yes |  |
|  |  | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-G } \end{array}$ | S3451 3 | 345.00 | 645451 |  |  |  | 9.5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |  |
| 41 | Extreme_2_f |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645455 | 645740 |  | 1 |  | $\quad$ Prior outage of S3455-S3740. SLG Fault at S3458 on S3458-Cooper followed by a stuck breaker opening the west bus. |

Page 38 of 52


Page 39 of 52




Page 42 of 52

|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SLG | S1250 5 | 161.00 | 646250 | 1454 | $9334$ | MVA | 8.5 |  |  |  |  |  |  | Yes |  |
| 57 | P1_2 | 3PH | S3459 3 | 345.00 | 645459 |  |  |  | 5 | Open | Transmission Circuit | 645459 | 645456 |  | 1 | Yes | 3-PH fault <br> at S3459 on <br> S3459-S3456. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645459 | 645456 |  | 1 |  |  |
|  |  | 3PH | S3459 3 | 345.00 | 645459 |  |  |  | 4.5 | Open | Transmission Circuit | 645459 | 645456 |  | 1 | Yes |  |
|  |  | SLG | S3456 3 | 345.00 | 645456 | 1690 | 19307 | MVA | 3 |  |  |  |  |  |  | Yes |  |
| 58 | P1_2 | 3PH | S3459 3 | 345.00 | 645459 |  |  |  | 5 | Open | Transmission Circuit | 645459 | 645456 |  | 1 | Yes | 3-PH fault <br> at S3459 on <br> S3459-S3456. <br> Normal <br> clearing with <br> successful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645459 | 645456 |  | 1 |  |  |
| 59 | P1_2 | 3PH | S1258 5 | 161.00 | 646258 |  |  |  | 6 | Open | Transmission Circuit | 646258 | 646263 |  | 1 | Yes | 3-PH fault <br> at S1258 on <br> S1258-S1263. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 20 |  |  |  |  |  |  |  |  |
|  |  | SLG | S1263 5 | 161.00 | 646263 | 261 | 1983 | MVA | 8.5 |  |  |  |  |  |  | Yes |  |
| 60 | P1_2 | 3PH | S1258 5 | 161.00 | 646258 |  |  |  | 6 | Open | Transmission Circuit | 646258 | 646263 |  | 1 | Yes | 3-PH fault <br> at S1258 on <br> S1258-S1263. <br> Normal <br> clearing with <br> successful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 200 | Close | Transmission Circuit | 646258 | 646263 |  | 1 |  |  |
| 61 | P6_2_1 |  |  |  |  |  |  |  |  | Prior Outage | Three Winding | 645456 | 646206 | 648256 | 1 |  | Prior outage of S3456 T4. 3-PH fault at S1258 on S1258-S1263. Normal clearing with unsuccessful reclosing. |

Page 43 of 52

|  |  | 3PH | S1258 5 | 161.00 | 646258 |  |  |  | 6 | Open | Transmission Circuit | 646258 | 646263 |  | 1 | Yes |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | 20 |  |  |  |  |  |  |  |  |
|  |  | SLG | S1263 5 | 161.00 | 646263 | 261 | 1983 | MVA | 8.5 |  |  |  |  |  |  | Yes |  |
| 62 | P6_2_1 |  |  |  |  |  |  |  |  | Prior Outage | Three Winding | 645456 | 646206 | 648256 | 1 |  | Prior <br> outage of <br> S3456 T4. <br> 3-PH fault at <br> S1258 on <br> S1258-S1263. <br> Normal <br> clearing with <br> successful <br> reclosing. |
|  |  | 3PH | S1258 5 | 161.00 | 646258 |  |  |  | 6 | Open | Transmission Circuit | 646258 | 646263 |  | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 200 | Close | Transmission Circuit | 646258 | 646263 |  | 1 |  |  |
| 63 | P1_2 | 3PH | S1298 5 | 161.00 | 646298 |  |  |  | 6 | Open | Transmission Circuit | 646298 | 646251 |  | 1 | Yes | 3-PH fault <br> at S1298 on <br> S1298-S1251. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 20 |  |  |  |  |  |  |  |  |
|  |  | 3 PH | S1298 5 | 161.00 | 646298 |  |  |  | 6 |  |  |  |  |  |  | Yes |  |
| 64 | P1_2 | 3PH | S1298 5 | 161.00 | 646298 |  |  |  | 6 | Open | Transmission Circuit | 646298 | 646251 |  | 1 | Yes | 3-PH fault <br> at S1298 on <br> S1298-S1251. <br> Normal <br> clearing with <br> successful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 200 | Close | Transmission Circuit | 646298 | 646251 |  | 1 |  |  |
| 65 | P4_2 | $\begin{array}{r} \text { SCMU } \\ \text { L-G } \end{array}$ | S1298 5 | 161.00 | 646298 |  |  |  | 6 | Open | Transmission Circuit | 646298 | 646251 |  | 1 | Yes | SLG Fault <br> at S1298 on <br> S1298-S1251 <br> followed by a <br> stuck breaker <br> opening <br> S1298-S1305. <br> Delayed <br> clearing. |
|  |  | $\begin{array}{r} \text { SCMU } \\ \text { L-G } \end{array}$ | S1298 5 | 161.00 | 646298 |  |  |  | 13.5 | Open | Transmission Circuit | 646298 | 646305 |  | 1 | Yes |  |
| 66 | P4_2 | $\begin{array}{r} \text { SCMU } \\ \text { L-G } \end{array}$ | S1298 5 | 161.00 | 646298 |  |  |  | 9 | Open | Transmission Circuit | 646298 | 646305 |  | 1 | Yes | SLG Fault <br> at S1298 on <br> S1298-S1305 <br> followed by a <br> stuck breaker <br> opening |

Page 44 of 52


Page 45 of 52

|  |  |  |  |  |  |  |  |  |  |  |  |  |  | Delayed clearing. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-G } \end{array}$ | S3455 3 | 345.00 | 645455 | 9.5 | Open | Three Winding | 645455 | 646255 | 648355 | 1 | Yes |  |
| 73 | P4_2 | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-G } \end{array}$ | S1361 5 | 161.00 | 646361 | 6 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes | SLG Fault at S1361 on S1361-S1255 followed by a stuck breaker opening the east bus. Delayed clearing. |
|  |  | $\begin{array}{r} \hline \text { SCMU } \\ \hline \text { L-G } \end{array}$ | S1361 5 | 161.00 | 646361 | 9 |  |  |  |  |  |  | Yes |  |
| 74 | P1_2 | 3PH | S1361 5 | 161.00 | 646361 | 6 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes | $\quad$ 3-PH fault at S1361 on S1361-S1255. Normal clearing with unsuccessful reclosing. |
|  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 |  | 1 |  |  |
|  |  | 3 PH | S1361 5 | 161.00 | 646361 | 6 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes |  |
| 75 | P1_2 | 3PH | S1361 5 | 161.00 | 646361 | 6 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes | $\quad$ 3-PH fault at S1361 on S1361-S1255. Normal clearing with successful reclosing. |
|  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 |  | 1 |  |  |
| 76 | Extreme_2_f |  |  |  |  |  | Prior Outage | Three Winding | 645456 | 646206 | 648256 | 1 |  | Prior <br> outage of <br> S3456 T4. <br> SLG Fault at <br> S3455 on <br> S3455-S3761 <br> followed by a <br> stuck breaker <br> opening <br> S3455 T3. <br> Delayed <br> clearing. |
|  |  | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-G } \\ \hline \end{array}$ | S3455 3 | 345.00 | 645455 | 4.5 | Open | Transmission Circuit | 645455 | 645761 |  | 1 | Yes |  |
|  |  | $\begin{array}{r} \hline \text { SCMU } \\ \text { L-G } \\ \hline \end{array}$ | S3455 3 | 345.00 | 645455 | 9.5 | Open | Three Winding | 645455 | 646255 | 648355 | 1 | Yes |  |
| 77 | Extreme_2_f | 3 PH | S3761 3 | 345.00 | 645761 |  |  |  |  |  |  |  | No | $\begin{aligned} & \quad \text { 3-PH fault } \\ & \text { at S3761 on } \\ & \text { S3455-S3761 } \end{aligned}$ |

Page 46 of 52

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | and 3-PH <br> fault at S1361 <br> on S1255- <br> S1361. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3PH | S1361 5 | 161.00 | 646361 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645761 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 1.5 | Open | Transmission Circuit | 646255 | 646361 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 | 1 |  |  |
|  |  | 3 PH | S1361 5 | 161.00 | 646361 |  |  |  | 6 | Open | Transmission Circuit | 646255 | 646361 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 572.5 |  |  |  |  |  |  |  |
|  |  | SLG | S3455 3 | 345.00 | 645455 | 2615 | $47487$ | MVA | 4.5 |  |  |  |  |  | Yes |  |
| 78 | Extreme_2_f | 3PH | S3761 3 | 345.00 | 645761 |  |  |  |  |  |  |  |  |  | No | 3-PH fault <br> at S3761 on <br> S3455-S3761 <br> and 3-PH <br> fault at S1361 <br> on S1255- <br> S1361. <br> Normal <br> clearing with <br> successful <br> reclosing. |
|  |  | 3PH | S1361 5 | 161.00 | 646361 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645761 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 1.5 | Open | Transmission Circuit | 646255 | 646361 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 | 1 |  |  |
|  |  |  |  |  |  |  |  |  | 596.5 | Close | Transmission Circuit | 645455 | 645761 | 1 |  |  |
| 79 | Extreme_2_f | 3PH | S3455 3 | 345.00 | 645455 |  |  |  |  |  |  |  |  |  | No | 3-PH fault <br> at S3455 on <br> S3455-S3761 <br> and 3-PH <br> fault at S1255 <br> on S1255- <br> S1361. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  | 3PH | S1255 5 | 161.00 | 646255 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645761 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 1.5 | Open | Transmission Circuit | 646255 | 646361 | 1 | Yes |  |

Page 47 of 52

|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3 PH | S1255 5 | 161.00 | 646255 |  |  |  | 6 | Open | Transmission Circuit | 646255 | 646361 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 572.5 |  |  |  |  |  |  |  |
|  |  | 3PH | S3455 3 | 345.00 | 645455 |  |  |  | 4.5 |  |  |  |  |  | Yes |  |
| 80 | Extreme_2_f | 3PH | S3455 3 | 345.00 | 645455 |  |  |  |  |  |  |  |  |  | No | 3-PH fault <br> at S3455 on <br> S3455-S3761 <br> and 3-PH <br> fault at S1255 <br> on S1255- <br> S1361. <br> Normal <br> clearing with <br> successful <br> reclosing. |
|  |  | 3 PH | S1255 5 | 161.00 | 646255 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645761 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 1.5 | Open | Transmission Circuit | 646255 | 646361 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 | 1 |  |  |
|  |  |  |  |  |  |  |  |  | 596.5 | Close | Transmission Circuit | 645455 | 645761 | 1 |  |  |
| 81 | P1_2 | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646209 | 646347 | 1 | Yes | 3-PH fault <br> at S1347 on <br> S1347-S1209. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  |  | SLG | S1209 5 | 161.00 | 646209 | 1931 | $13978$ | MVA | 8.5 |  |  |  |  |  | Yes |  |
| 82 | P1_2 | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646209 | 646347 | 1 | Yes | $\quad$ 3-PH fault <br> at P 1347 on <br> S1347-S1209. <br> Normal <br> clearing with <br> successful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 620 | Close | $\qquad$ | 646209 | 646347 | 1 |  |  |
| 83 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646236 | 646252 | 1 |  | $\quad$ Prior outage of S1236-S1252. 3-PH fault at S1347 on S1347-S1209. Normal clearing with unsuccessful reclosing. |

Page 48 of 52

|  |  | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646209 | 646347 |  | 1 | Yes |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S1209 5 | 161.00 | 646209 | 1931 | $13978$ | MVA | 8.5 |  |  |  |  |  |  | Yes |  |
| 84 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646236 | 646252 |  | 1 |  |  |
|  |  | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646209 | 646347 |  | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646209 | 646347 |  | 1 |  |  |
| 85 | P1_2 | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646252 | 646347 |  | 1 | Yes | $\quad$ 3-PH fault at S1347 on S1347-S1252. Normal clearing with unsuccessful reclosing. |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646252 |  |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S1252 5 | 161.00 | 646252 | 1931 | 13978 | MVA | 8.5 |  |  |  |  |  |  | Yes |  |
| 86 | P1_2 | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646252 | 646347 |  | 1 | Yes | $\quad$ 3-PH fault <br> at S1347 on <br> S1347-S1252. <br> Normal <br> clearing with <br> successful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646252 |  |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646252 | 646347 |  | 1 |  |  |
| 87 | P6_2_1 |  |  |  |  |  |  |  |  | Prior Outage | Three Winding | 645459 | 646209 | 648359 | 1 |  | Prior outage of S3459 T6. 3-PH fault at S1347 on S1347-S1252. Normal clearing with unsuccessful reclosing. |
|  |  | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646252 | 646347 |  | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646252 |  |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |


|  |  | SLG | S1252 5 | 161.00 | 646252 | 1931 | $13978$ | MVA | 8.5 |  |  |  |  |  |  | Yes |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 88 | P6_2_1 |  |  |  |  |  |  |  |  | Prior Outage | Three Winding | 645459 | 646209 | 648359 | 1 |  | Prior <br> outage of <br> S3459 T6. <br> 3-PH fault at <br> S1347 on <br> S1347-S1252. <br> Normal <br> clearing with <br> successful <br> reclosing. |
|  |  | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646252 | 646347 |  | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 0 | Open | Load | 646252 |  |  | 00 |  |  |
|  |  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646252 | 646347 |  | 1 |  |  |
| 89 | P1_2 | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646362 | 646363 |  | 1 | Yes | 3-PH fault at S1363 on S1363-S1362 Ckt 1. Normal clearing with unsuccessful reclosing. |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S1362 5 | 161.00 | 646362 | 1133 | $9911$ | MVA | 8.5 |  |  |  |  |  |  | Yes |  |
| 90 | P1_2 | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646362 | 646363 |  | 1 | Yes | $\quad$ 3-PH fault <br> at S1363 on <br> S1363-S1362 <br> Ckt 1. Normal <br> clearing with <br> successful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646362 | 646363 |  | 1 |  |  |
| 91 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646362 | 646363 |  | 2 |  | Prior <br> outage of <br> S1362-S1363 <br> Ckt 2. 3- <br> PH fault at <br> S1363 on <br> S1363-S1362 <br> Ckt 1. Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646362 | 646363 |  | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |  |
|  |  | SLG | S1362 5 | 161.00 | 646362 | 1133 | $9911$ | MVA | 8.5 |  |  |  |  |  |  | Yes |  |
| 92 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646362 | 646363 |  | 2 |  | Prior outage of |

Page $\mathbf{5 0}$ of $\mathbf{5 2}$

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | S1362-S1363 <br> Ckt 2. 3- <br> PH fault at <br> S1363 on <br> S1363-S1362 <br> Ckt 1. Normal clearing with successful reclosing. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646362 | 646363 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646362 | 646363 | 1 |  |  |
| 93 | P1_2 | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646281 | 646363 | 1 | Yes | 3-PH fault <br> at S1363 on <br> S1363-S1281. <br> Normal <br> clearing with <br> unsuccessful <br> reclosing. |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  |  | SLG | S1281 5 | 161.00 | 646281 | 972 | $8495$ | MVA | 8.5 |  |  |  |  |  | Yes |  |
| 94 | P1_2 | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646281 | 646363 | 1 | Yes | 3-PH fault at S1363 on S1363-S1281. Normal clearing with successful reclosing. |
|  |  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646281 | 646363 | 1 |  |  |
| 95 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646362 | 646363 | 2 |  | $\quad$ Prior outage of S1362-S1363 Ckt 2. 3- PH fault at S1363 on S1363-S1281. Normal clearing with unsuccessful reclosing. |
|  |  | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646281 | 646363 | 1 | Yes |  |
|  |  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  |  | SLG | S1281 5 | 161.00 | 646281 | 972 | $8495$ | MVA | 8.5 |  |  |  |  |  | Yes |  |
| 96 | P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646362 | 646363 | 2 |  |  |

Page 51 of 52


