

GEN-2016-071

Impact Restudy for

Generator Modification

(Turbine Change)

Published October 2018

By Generator Interconnection

REVISION HISTORY

DATE OR VERSION NUMBER	AUTHOR	CHANGE DESCRIPTION	COMMENTS
10/30/2018	Generator Interconnection		

EXECUTIVE SUMMARY

The GEN-2016-071 Interconnection Customer has requested a modification to its Interconnection Request. SPP has performed this system impact restudy to determine the effects of changing wind turbine generators from the previously studied eighty (80) GE 2.5 MW wind turbine generators to seventy-one (71) GE 2.5MW and nine (9) GE 2.3MW wind turbine generators as well as a POI change from WFEC Chilocco to OKGE Middleton Tap (one bus away). The total nameplate goes from 200 MW to 198.2 MW.

Because the turbine changes were all from GE turbines to GE turbines and the total change in collector system impedance was deemed negligible, no stability analysis was performed.

Due to the change in POI, the rebuild of Middleton Tap – Chilocco upgrade is no longer necessary. Cost Allocation remains the same for all other upgrades. No additional upgrades were identified.

A low-wind/no-wind condition analysis were performed for this modification request, and the project will be required to install approximately 6.8 MVAr of reactor shunts on its substation 138 kV bus(es). This is necessary to offset the capacitive effect on the transmission network caused by the project's transmission line and collector system during low-wind/no-wind conditions.

With the assumptions outlined in this report and with all the required network upgrades from the DISIS 2015-002 in place, GEN-2016-071 with the seventy-one (71) GE 2.5MW and nine (9) GE 2.3MW wind turbine generators should be able to interconnect reliably to the SPP transmission grid.

It should be noted that this study analyzed the requested modification to change generator technology, manufacturer, and layout. This study analyzed many of the most probable contingencies, but it is not an all-inclusive list and cannot account for every operational situation. It is likely that the customer may be required to reduce its generation output to 0 MW, also known as curtailment, under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Nothing in this study should be construed as a guarantee of transmission service or delivery rights. If the customer wishes to obtain deliverability to final customers, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the customer.

CONTENTS

Revision History	i
Executive Summary	
Section 1: Introduction	4
Table 1-1: Interconnection Request	4
Table 1-2: Group 8 Prior, equally and Later Queued Interconnection Requests	4
Section 2: Facilities	7
Fligure 2-1: GEN-2016-071 One-line Diagram	7
Section 3: Power Flow Analysis	8
Table 3-1: GEN-2016-071 Network Upgrades	8
Section 3: Stability Analysis	9
Section 4: Reduced Generation Analysis	
Model Preparation	10
Results	10
Table 4-1: Summary of Shunt Reactor Requirements	10
Section 5: Conclusion	11
Table 5-1: Interconnection Request	
Appendix A: Low Wind Analysis	12
Fligure A-1: GEN-2016-071 with Generation Off and no Shunt Reactor	12
Fligure A-1: GEN-2016-071 with Generation Off and Shunt Reactor	12

SECTION 1: INTRODUCTION

GEN-2016-071 Impact Restudy is a generation interconnection study performed to study the impacts of interconnecting the project shown in Table I-1. This restudy evaluates the requested modification to change from eighty (80) GE 2.5 MW wind turbine generators to seventy-one (71) GE 2.5MW and nine (9) GE 2.3MW wind turbine generators, as well as a POI change from WFEC Chilocco to OKGE Middleton Tap (one bus away). The total output of GEN-2016-071 went from 200.1 MW to 198.2 MW.

TABLE 1-1: INTERCONNECTION REQUEST

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2016-071	198.2	GE 2.5MW & GE 2.3 (wind)	Middleton Tap (532984)

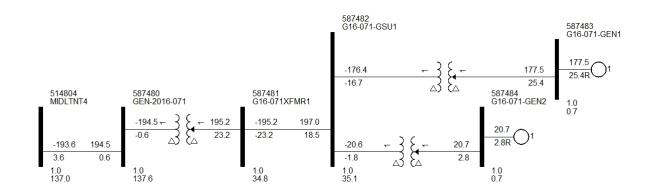
The prior-queued, equally-queued and lower queued requests shown in Table I-2 were included in this study and the wind farms were dispatched to 100% of rated capacity.

TABLE 1-2: GROUP 8 PRIOR, EQUALLY AND LATER QUEUED INTERCONNECTION REQUESTS

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2016-009	29	GENROU	Osage 69Kv (514742)
GEN-2016-022	151.8	Vestas V126 3.45MW	Ranch Road 345kV (515576)
GEN-2016-031	1.5MW uprate of GEN-2015- 001(total = 201.3MW)	Vestas V126 3.3MW	Ranch Road 345kV (515576)
GEN-2016-032	200	Vestas V110 2MW	Tap Marshall (514733)- Cottonwood Creek (514827) 138kV, (G16-032-TAP, 560077)
GEN -2016-048	82.3	Sunny Central 2940 2.94MW	Sooner 138kV (514802)
GEN-2016-060	25.3	G.E. 2.3MW	Belle Plain 138kV (533063)
GEN-2016-061	250.7	GE 2.3 MW	Tap Woodring (514715) – Sooner (514803) 345kV (G16-061-TAP, 560084)
GEN-2016-068	250	GE 2.0MW	Woodring 345kV (514715)
GEN-2016-073	220	GE 2.0MW	Tap on Thistle (539801) to Wichita (532796) 345kV, ckt1&2 (Buffalo Flats 345kV; 560033)
GEN-2002-004	199.5	GE.1.5MW	Latham 345kV (532800)
GEN-2005-013	199.8	Vestas V90 1.8MW	Caney River 345kV (532780)
GEN-2007-025	299.2	GE 1.6MW	Viola 345kV (532798)
GEN-2008-013	300	G.E. 1.68MW	Hunter 345kV (515476)
GEN-2008-021	1261 Summer 1283 Winter	GENROU	Wolf Creek 345kV (532797)

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2008-098	100.8	Vestas V100 1.8MW	Tap on the Wolf Creek – LaCygne 345kV line (560004)
GEN-2009-025	59.8	Siemens 2.3MW	Tap on the Deerck – Sincblk 69KV line (515528)
GEN-2010-003	100.8	Vestas V100 1.8MW	Tap on the Wolf Creek – LaCygne 345kV line (560004)
GEN-2010-005	299.2	GE 1.6MW	Viola 345kV (532798)
ASGI-2010-006	150	GE1.5MW	Remington 138kV (301369)
GEN-2010-055	4.8	GENROU	Wekiwa 138kV (509757)
GEN-2011-057	150.4	GE 1.6MW	Creswell 138kV (532981)
KCPL Distributed: Osawatomie	76.0	GENROU (543078)	Paola 161kV
GEN-2012-032	300	Vestas V112 3.0MW	Tap Rose Hill-Sooner 345kV (562318)
GEN-2012-033	98.8	GE 1.62MW	Tap Bunch Creek-South 4th 138kV(562303)
GEN-2012-041	85 Summer 121.5 Winter	GENROU	Tap Rose Hill-Sooner 345kV (562318)
GEN-2013-012	4 x 168.0MW Summer 4 x 215MW Winter	GENROU (514910) (514911) (514912) (514942)	Redbud 345kV (514909)
GEN-2013-028	516.4 Summer 559.5 Winter	GENROU (583743, 583746)	Tap on Tulsa N to GRDA1 345kV (562423)
GEN-2013-029	300	Vestas V100 VCSS 2MW (583753, 583756)	Renfrow 345kV(515543)
GEN-2014-001	200.6	GE 1.7MW 100m (583853,583856)	Tap Wichita to Emporia Energy Center 345kV (562476)
GEN-2014-028	35 (Uprate) (Pgen=259W/256 S)	GENROU	Riverton 161kV (547469)
GEN-2014-064	248.4	GE 2.3MW	Otter 138kV (514708)
ASGI-2014-014	56.4W/54.3S	GENROU	Ferguson 69kV (512664)
GEN-2015-001	200.0	Vestas V110 2.0MW	Ranch Road 345kV
GEN-2015-015	154.6	Siemens 2.3MW with Power Boost (115kW => 2.415MW)	Tap Medford Tap – Coyote 138kV
GEN-2015-016	200.0	Vestas V110 2.0MW	Tap Centerville – Marmaton 161kV
GEN-2015-024	220.0	GE 2.0MW	Tap on Thistle to Wichita 345kV, ckt1&2 (560033)
GEN-2015-025	220.0	GE 2.0MW	Tap on Thistle to Wichita 345kV, ckt1&2 (560033)
GEN-2015-030	200.1	GE 2.3MW	Sooner 345kV
GEN-2015-034	200	Vestas V112- 2MW	Ranch Road 345kV (515576)
ASGI-2015-004	54.300 Summer 56.364 Winter	GENSAL	Coffeyville Municipal Light & Power Northern Industrial Park Substation 69kV (512735)
GEN-2015-047	300	Vestas V110-2MW	Sooner 345kV Tap (514803)

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2015-052	300	Vestas V110-2MW	Tap on Opensky (515621) to RoseHill (532794) 345 kV (560053)
GEN-2015-062	4.5	G.E. 1.79MW	Breckenridge 138kV (514815)
GEN-2015-063	300	Vestas V110-2MW	Tap on Woodring (514715) to Matthewson (515497) 345 kV (560055)
GEN-2015-069	300	Vestas V110-2MW	Union Ridge 230kV (532874)
GEN-2015-073	200.1	Siemens 2.3MW	Emporia/Lang 345kV (532768)
GEN-2015-066	248	G.E. 2.3MW	Tap on Cleveland (512694) to Sooner (514803) 345 kV (560056)
GEN-2015-083	125	GE 2.3MW	Belle Plain 138kV (533063)
GEN-2015-090	220	G.E. 2MW	Wichita (532796)-Thistle (539801) 345kV Tap (GEN-2015-024 (560033) 345kV)


Because the turbine changes were all from GE turbines to GE turbines and the total change in collector system impedance was deemed negligible, no stability analysis was performed.

A low-wind/no-wind analysis was performed on this project since it is a non-synchronous resource. The low-wind/no-wind analysis determines the capacitive effect at the POI caused by the project's collector system and transmission line capacitance. A shunt reactor size was determined to offset the capacitive effect and to maintain zero MVAr flow at the POI when the plant generators and capacitors are off-line such as might be seen in low-wind or no-wind conditions.

SECTION 2: FACILITIES

A one-line drawing for the GEN-2016-071 generation interconnection request is shown in Figure 2-1. The POI is a new tap on the OKGE Middleton Tap 138kVsubstation.

FIIGURE 2-1: GEN-2016-071 ONE-LINE DIAGRAM

SECTION 3: POWER FLOW ANALYSIS

By moving the POI to Middleton Tap, the assigned upgrade to rebuild Middleton Tap to Chilocco $138\ kV$ is no longer required. The Cost Allocation for all other upgrades assigned to GEN-2016-071 remains the same.

TABLE 3-1: GEN-2016-071 NETWORK UPGRADES

Network Upgrade	POI at Chilocco 138kV	New POI at Middleton Tap 138kV
Rebuild Farber - Belle Plains 138 kV CKT 1 (Current Study)	✓	✓
GEN-2015-063 Tap _Matthewson 345 kV CKT 1 (Previously Allocated)	✓	✓
Rebuild Kildare - White Eagle 138kV CKT 1 (Current Study)	✓	✓
Rebuild Middleton Tap - Chilocco 138kV CKT 1 (Current Study)	✓	
Rebuild Osage - Webb Tap 138kV CKT 1 (Current Study)	√	✓
Rebuild Osage - White Eagle 138kV CKT 1 (Current Study)	√	√

SECTION 3: STABILITY ANALYSIS

Because the turbine changes were all from GE turbines to GE turbines and the total change in collector system impedance was deemed negligible, no stability analysis was performed.

SECTION 4: REDUCED GENERATION ANALYSIS

Interconnection requests for wind generation projects that interconnect on the SPP system are analyzed for the capacitive charging effects during reduced generation conditions (unsuitable wind speeds, curtailment, etc.) at the generation site.

MODEL PREPARATION

The project generators and capacitors (if any), and all other wind projects that share the same POI, were turned off in the base case. The resulting reactive power injection into the transmission network comes from the capacitance of the project's transmission lines and collector cables. This reactive power injection is measured at the POI. Shunt reactors were added at the study project substation low voltage bus to bring the MVAr flow into the POI down to approximately zero.

RESULTS

A final shunt reactor requirement for each of the studied interconnection requests is shown in Table 4-1. One line drawings used in the analysis are shown in Appendix A: Low Wind Analysis.

TABLE 4-1: SUMMARY OF SHUNT REACTOR REQUIREMENTS

Request	Capacity	POI	Approximate Shunt Reactor Required
GEN-2016-071	198.2MW	Middleton Tap (514804)	6.8 MVAr

The results shown are for the 2025 summer case. The other two cases (2016 winter and 2017 summer) were almost identical since the generation plant design is the same in all cases.

SECTION 5: CONCLUSION

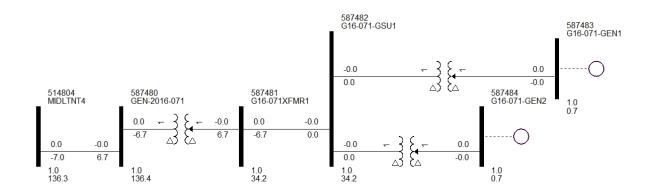
The SPP GEN-2016-071 Impact Restudy evaluated the impact of interconnecting the project shown below in Table 5-1.

TABLE 5-1: INTERCONNECTION REQUEST

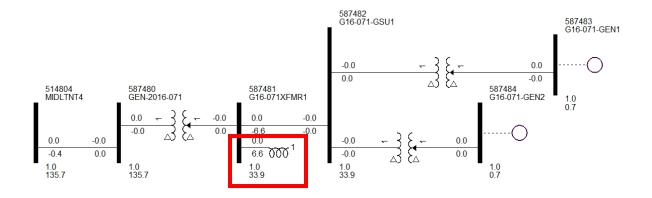
Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2016-071	198.2 MW	9 GE 2.3 MW & 71 GE 2.5MW generators	Middleton Tap (514804)

Because the turbine changes were all from GE turbines to GE turbines and the total change in collector system impedance was deemed negligible, no stability analysis was performed.

Due to the change in POI, the rebuild of Middleton Tap – Chilocco upgrade is no longer necessary. Cost Allocation remains the same for all other upgrades. No additional upgrades were identified.


A low-wind/no-wind condition analysis was performed for this modification request. The project will be required to install a total of approximately 6.8 MVAr of reactor shunts on its substation 138kV bus. This is necessary to offset the capacitive effect on the transmission network cause by the project's transmission line and collector system during low-wind or no-wind conditions.

Any changes to the assumptions made in this study, for example, one or more of the previously queued requests withdraw, may require a re-study at the expense of the Customer.


Nothing in this System Impact Study constitutes a request for transmission service or confers upon

APPENDIX A: LOW WIND ANALYSIS

FIIGURE A-1: GEN-2016-071 WITH GENERATION OFF AND NO SHUNT REACTOR

FIIGURE A-1: GEN-2016-071 WITH GENERATION OFF AND SHUNT REACTOR

