

INTERCONNECTION FACILITIES STUDY REPORT

GEN-2016-177 (IFS-2016-002-60)

Published February 2020

By SPP Generator Interconnections Dept.

REVISION HISTORY

DATE OR VERSION NUMBER	AUTHOR	CHANGE DESCRIPTION
12/19/2019	SPP	Initial draft report issued.
02/21/2020	SPP	Final report issued.

CONTENTS

Revision Historyi
Summary1
Introduction1
Phase(s) of Interconnection Service1
Credits/Compensation for Amounts Advanced for Network Upgrade(s)1
Interconnection Customer Interconnection Facilities2
Transmission Owner Interconnection Facilities and Non-Shared Network Upgrade(s)
Shared Network Upgrade(s)4
Previous Network Upgrade(s)4
Affected System Upgrade(s)5
Conclusion5
Appendices
A: Transmission Owner's Interconnection Facilities Study Report and Network Upgrades Report(s)

SUMMARY

INTRODUCTION

This Interconnection Facilities Study (IFS) for Interconnection Request <u>GEN-2016-177/IFS-2016-002-60</u> is for a <u>17 MW</u> generating facility located in <u>Yoakum County, TX</u>. The Interconnection Request was studied in the <u>DISIS-2016-002</u> Impact Study and Restudies for <u>Energy Resource Interconnection</u> <u>Service (ERIS)</u>. The Interconnection Customer's requested commercial operation date is <u>September 31, 2019</u>.

The interconnecting Transmission Owner, <u>Southwestern Power Service (SPS)</u> performed a detailed IFS at the request of SPP. The full report is included in Appendix A. SPP has determined that full Interconnection Service will be available after the assigned Transmission Owner Interconnection Facilities (TOIF), Non-Shared Network Upgrades, Shared Network Upgrades, Previous Network Upgrades, and Affected System Upgrades that are required for full interconnection service are completed.

The primary objective of the IFS is to identify necessary Transmission Owner Interconnection Facilities, Network Upgrades, other direct assigned upgrades, cost estimates, and associated upgrade lead times needed to grant the requested Interconnection Service.

PHASE(S) OF INTERCONNECTION SERVICE

It is not expected that Interconnection Service will occur in phases. However, full Interconnection Service will not be available until all Interconnection Facilities and Network Upgrade(s) can be placed in service.

CREDITS/COMPENSATION FOR AMOUNTS ADVANCED FOR NETWORK UPGRADE(S)

Interconnection Customer shall be entitled to compensation in accordance with Attachment Z2 of the SPP OATT for the cost of SPP creditable-type Network Upgrades, including any tax gross-up or any other tax-related payments associated with the Network Upgrades, that are not otherwise refunded to the Interconnection Customer. Compensation shall be in the form of either revenue credits or incremental Long Term Congestion Rights (iLTCR).

Southwest Power Pool, Inc.

INTERCONNECTION CUSTOMER INTERCONNECTION FACILITIES

The Generating Facility is proposed to consist of <u>gas turbines</u> for a total generating nameplate capacity of <u>17 MW</u>.

The Interconnection Customer's Interconnection Facilities to be designed, procured, constructed, installed, maintained, and owned by the Interconnection Customer at its sole expense include:

- 34.5 kV underground cable collection circuits;
- 34.5 kV to 115 kV transformation substation with associated 34.5 kV and 115 kV switchgear;
- Two (2) 115/34.5 kV 16.8/22.4/28 MVA step-up transformers to be owned and maintained by the Interconnecting Customer at the Interconnection Customer's substation;
- A 115 kV transmission line to connect the Interconnection Customer's substation to the Point of Interconnection ("POI") at the 115 kV bus at existing Transmission Owner substation ("Cornell 115 kV") that is owned and maintained by Transmission Owner;
- All transmission facilities required to connect the Interconnection Customer's substation to the POI;
- Equipment at the Interconnection Customer's substation necessary to maintain a composite power delivery at continuous rated power output at the high-side of the generator substation at a power factor within the range of 95% lagging and 95% leading in accordance with Federal Energy Regulatory Commission (FERC) Order 827. The Interconnection Customer may use turbines manufacturing options for providing reactive power under no/reduced generation conditions. The Interconnection Customer will be required to provide documentation and design specifications demonstrating how the requirements are met; and,
- All necessary relay, protection, control and communication systems required to protect Interconnection Customer's Interconnection Facilities and Generating Facilities and coordinate with Transmission Owner's relay, protection, control and communication systems.

TRANSMISSION OWNER INTERCONNECTION FACILITIES AND NON-SHARED NETWORK UPGRADE(S)

To facilitate interconnection, the interconnecting Transmission Owner will perform work as shown below necessary for the acceptance of the Interconnection Customer's Interconnection Facilities.

Table 1 and **Table 2** lists the Interconnection Customer's estimated cost responsibility for Transmission Owner Interconnection Facilities (TOIF) and Non-Shared Network Upgrade(s) and provides an estimated lead time for completion of construction. The estimated lead time begins when the Generator Interconnection Agreement has been fully executed.

Transmission Owner Interconnection Facilities (TOIF)	Total Cost Estimate (\$)	Allocated Percent (%)	Allocated Cost Estimate (\$)	Estimated Lead Time
Transmission Owner Cornell 155 kV Interconnection Substation: Construct wave trap, RTU, real time data, and associated equipment.	\$750,000	100%	\$750,000	12 Months
Total	\$750,000		\$750,000	

Table 1: Transmission Owner Interconnection Facilities (TOIF)

Table 2: Non-Shared Network Upgrade(s)

Non-Shared Network Upgrades Description	Z2 Type ¹	Total Cost Estimate (\$)	Allocated Percent (%)	Allocated Cost Estimate (\$)	Estimated Lead Time
Transmission Owner Cornell 115 kV Interconnection Substation: Construct remote end relaying.	non- creditable	\$100,000	100%	\$100,000	12 Months
Total		\$100,000		\$100,000	

¹ Indicates the method used for calculating credit impacts under Attachment Z2 of the Tariff.

SHARED NETWORK UPGRADE(S)

The Interconnection Customer's share of costs for Shared Network Upgrades is estimated in **Table 3** below.

Shared Network Upgrades Description	Z2 Type	Total Cost Estimate (\$)	Allocated Percent (%)	Allocated Cost Estimate (\$)	Estimated Lead Time
None	N/A	\$0	N/A	\$0	N/A
Total		\$0		\$0	

Table 3: Interconnection Customer Shared Network Upgrade(s)

All studies have been conducted assuming that higher-queued Interconnection Request(s) and the associated Network Upgrade(s) will be placed into service. If higher-queued Interconnection Request(s) withdraw from the queue, suspend or terminate service, the Interconnection Customer's share of costs may be revised. Restudies, conducted at the customer's expense, will determine the Interconnection Customer's revised allocation of Shared Network Upgrades.

PREVIOUS NETWORK UPGRADE(S)

Certain Previous Network Upgrades are **currently not the cost responsibility** of the Interconnection Customer but will be required for full Interconnection Service.

Table 4: Interconnection	Customer Previo	ous Network Upgrade(s)
--------------------------	-----------------	------------------------

Previous Network Upgrade(s) Description	Current Cost Assignment	Estimated In- Service Date
None	\$0	N/A

Depending upon the status of higher- or equally-queued customers, the Interconnection Request's inservice date is at risk of being delayed or Interconnection Service is at risk of being reduced until the inservice date of these Previous Network Upgrades. Southwest Power Pool, Inc.

AFFECTED SYSTEM UPGRADE(S)

To facilitate interconnection, the Affected System Transmission Owner will be required to perform the facilities study work as shown below necessary for the acceptance of the Interconnection Customer's Interconnection Facilities. **Table 5** displays the current impact study costs as part of the Affected System Impact review. The Affected System facilities study could provide revised costs and will provide each Interconnection Customer's allocation responsibilities for the upgrades.

Table 5: Interconnection Customer Affected System Upgrade(s)

Affected System Upgrades Description	Total Cost Estimate (\$)	Allocated Share (%)	Allocated Cost Estimate (\$)
None	\$0	N/A	\$0
Total	\$0		\$0

CONCLUSION

After all Interconnection Facilities and Network Upgrades have been placed into service, Interconnection Service for 17 MW can be granted. Interconnection Customer Limited Operation Interconnection Service (LOIS) amount studied in DISIS-2016-002-2 is 17 MW. Full Interconnection Service will be delayed until the TOIF, Non-Shared NU, Shared NU, Previous NU, Affected System Upgrades that are required for full interconnection service are completed. The Interconnection Customer's estimated cost responsibility for TOIF and Non-Shared NU that is required for full interconnection service is summarized in the table below.

Table 6: Cost Summary

Description	Allocated Cost Estimate
Transmission Owner Interconnection Facilities	\$750,000
Network Upgrades	\$100,000
Total	\$850,000

A draft Generator Interconnection Agreement will be provided to the Interconnection Customer consistent with the final results of this IFS report. The Transmission Owner and Interconnection Customer will have 60 days to negotiate the terms of the GIA consistent with the SPP Open Access Transmission Tariff (OATT).

A: TRANSMISSION OWNER'S INTERCONNECTION FACILITIES STUDY REPORT AND NETWORK UPGRADES REPORT(S)

See next page for the Transmission Owner's Interconnection Facilities Study Report and Network Upgrades Report(s).

Facilities Study For Southwest Power Pool (SPP)

GEN-2016-177 Total Output: 17 MW Yoakum County, Texas

Xcel Energy Services, Inc. Transmission Planning South Updated 12/17/2019

Executive Summary

The Southwest Power Pool (SPP or Transmission Provider) evaluated the request GEN-2016-177 to interconnect the generation facility to the SPS transmission system in the Definitive Interconnection System Impact Study (DISIS-2016-002), which was completed in December 2019.

GEN-2016-177 requested the interconnection of a 17 MW gas turbine energy generation facility, located in Yoakum County, Texas, to their own Cornell substation that is tied to the Southwestern Public Service Company (SPS or Transmission Owner) transmission network. To accommodate the Interconnection Customer's (IC) request, SPS will need to install communication equipment, protection equipment, relay setting changes, and metering, among other items. The IC will connect the gas turbine to their 12.47 kV bus that is connected to the 115 kV bus via a transformer in the Cornell substation. A 115 kV transmission line exists from their substation facility to the SPS's transmission network. The IC will be required to maintain a Power Factor between 0.95 lagging and 0.95 leading at the Point of Interconnection (POI) between the customer's facility and the SPS Transmission system.

SPP requires that each generator shall implement automatic Under Frequency Load Shedding (UFLS) according to the SPP UFLS Plan for SPS found in the Xcel Energy interconnection document for "Large Generation Interconnection Guidelines (>20MW)" found at the following link: https://www.transmission.xcelenergy.com/Interconnections

Note: SPS uses the "Large Generation Interconnection Guidelines (>20MW)" document for all generation interconnections.

To fulfill this requirement, coordination with Xcel Energy is required during the under-frequency relay-setting phase for the generation. The IC is required to report their generation off-nominal frequency tripping relay settings to SPP and SPS. SPS specifies that generators shall not trip at frequencies above 58.5 Hz unless exceptions in the Transmission Provider Criteria are met. The IC agrees that the energy generating units installed at this interconnection will not be tripped for under-frequency conditions above 58.5 Hz in compliance with Transmission Provider criteria. This means that the generation subject to this Interconnection Agreement may not trip for under-frequency conditions on the transmission system until all under-frequency load shedding relays have operated. SPS will also require that the IC be in compliance with all applicable criteria, guidelines, standards, requirements, regulations, and procedures issued by the North American Electric Reliability Corporation (NERC), SPP, and the Federal Energy Regulatory Commission (FERC) or their successor organizations.

The IC is responsible for all the cost of the Interconnection Facilities, installation of the direct assigned Transmission Owner Interconnection Facilities (TOIF) which are facilities paid for by the IC but are owned, operated and maintained by SPS; inclusive of all construction required for the IC to interconnect to the SPS transmission network.

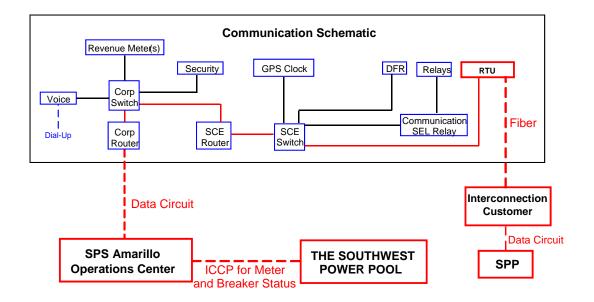
The shared network upgrades will be determined at a later date by SPP and may impact the total overall costs for interconnection of the IC.

It is anticipated that the entire process of installing the appropriate communication, protection, and metering equipment for the acceptance of the IC facility output and the network upgrades allocated to this project will require approximately 12 months to complete after an Interconnection Agreement is signed and an authorization to proceed is received. The IC's cost for the interconnection of this generation facility is shown below in Table 1, with the detailed description of the cost shown in Table 2.

Table 1 – Cost Summary¹

Shared Network Upgrades Total:	\$ See DISIS Report	
Network Upgrades:	\$ 100,000	
Transmission Owner Interconnection Facilities:	\$ 750,000	
Total:	\$ 850,000	

 $^{^{1}}$ The cost estimates are 2019 dollars with an accuracy level of ±20%.


General Description of Customer and SPS² Facilities

- 1. **Construction at the Customer owned Substation**: See Appendix A, Figure A-1 for general vicinity location map of the facility.
 - a. Location: IC will build the generation facility at their Cornell Substation, in Yoakum County, TX.
 - b. Bus Design: The bus is owned and operated by the customer.
 - c. Revenue Metering: An individual billing meter will be installed at the SPS substation on the line terminal from the IC's substation, which meets the standards: ANSI C12.1 accuracy class 0.2 (3-PT's IEEE C57.13 accuracy class 0.3 and 3-CT's IEEE C57.13 accuracy class 0.15) for full 3-phase 4-wire metering. Pulses out of the billing meter will be sent via SCADA to the Transmission Owner's Control Center in Amarillo, Texas.
 - i. Wind Interconnections: two meters per line terminal will be installed
 - 1. One will be primary and the other will be a back up
 - ii. Solar Interconnections: a single meter per line terminal will be installed
 - iii. Coal, Natural Gas, hydro, other: a single meter per line terminal will be installed
 - d. **Disturbance Monitoring Device**: A Disturbance Fault Recorder (DFR), capable of recording faults, swings, and long term trending, will be installed to monitor and record conditions in the substation and on the transmission lines. The disturbance equipment shall also be equipped with a GPS time synching clock. This equipment will have communication capability with a dedicated communication circuit. The disturbance equipment will have its own dedicated communications circuit.
 - e. **Remote Terminal Unit (RTU)**: A RTU will be utilized for communications with the new IC facilities. A Communication SEL Relay will be utilized for relay communications and other functions as required; these costs will be directly assigned to the IC. The IC will provide and install a RTU for metering and telemetry at the IC's facility as required by the latest Xcel Energy Interconnection Guidelines.
 - f. Communications: To meet its Communications obligations, the IC shall be responsible for making arrangements with the local phone company to provide a communication circuit as required by the Transmission Owner. Transmission Owner equipment may include, but is not limited to the following: relay communication equipment, RTU, and disturbance monitoring equipment. Prior to any construction, the IC is required to contact the Transmission Owner substation-engineering department for all communication details and provide detail of the method to be used in communication.

The following communications schematic diagram, which includes communication equipment information for the IC, Transmission Provider (Southwest Power Pool) and Transmission Owner (Southwestern Public Service), is provided to assist the Parties as a template.

A schematic outlining the proposed communications is provided below:

² All modifications to SPS facilities will be owned, maintained and operated by SPS

IC shall be responsible for providing the fiber optic communication circuit installed in the overhead transmission line static wire from the customer substation to the SPS substation for protective relaying and for transmitting metering and status data to SPS. Utilizing this fiber optic connection, SPS will establish a direct connection to the IC's RTU.

SPS will not serve as a proxy for communication from the IC to SPP.

2. Transmission Work – Engineering and Construction

- a. **Coordination**: The SPS Transmission Engineering and Design group requires an engineering review of the customer's design prior to any construction by the IC or its contractor on any customer transmission lines or doing work in close proximity to any SPS transmission line. It is the IC's responsibility to initiate the design review in a timely manner before construction of any transmission line begins. If the review has not been made or the design at any of the aforementioned locations is deemed inadequate, the crossing(s) and or termination into the interchange will be delayed until the matters are resolved. SPS will not be held responsible for these delays
- b. **Fault or Short Circuit Study**: The IC will coordinate with the System Protection department at SPS on the available fault current at the interconnection location following the acceptance of the Generator Interconnection Agreement (GIA) and prior to final design on the IC's facilities.
- c. **Schedule**: An engineering and construction schedule for this project is estimated at approximately 12 months. Other factors associated with clearances, equipment delays and work schedules could cause additional delays. This is applicable after all required agreements are signed and internal approvals are granted
- 3. Right-Of-Way

- a. **Permitting**: The IC will be responsible for any permitting and right of way of their substation and their transmission line from their substation to the Point of Interconnection (POI).
- b. **Construction Power and Retail Service**: It is the sole responsibility of the IC to make arrangements for both construction and station power. The IC needs to make arrangements for retail service from the local retail provider. Retail provider and Customer will be responsible for making any necessary transmission service arrangements as required under the SPP OATT.

4. Project and Operating Concerns:

- a. Close work between the Transmission group, the IC's personnel and local operating groups will be imperative in order to meet any in-service date that has been established.
- b. The IC will be required to maintain a power factor between 0.95 lagging and a 0.95 leading at the Point of Interconnection (POI). All capacitors required will be installed on the lower voltage bus at IC's substation. This is required to maintain acceptable dynamic voltage rise as per latest revision of the Xcel Energy Interconnection Guidelines for Transmission Interconnection Producer-Owned Generation Greater than 20 MW. If switched reactive devices are used on the IC's system, they need to be switched in stages where the voltage rise is less than 3%.

5. Estimated Construction Costs

a. The projects required for the interconnection of GEN-2016-177 consist of the projects summarized in the table below:

Project	Description	Estimated Cost
	Shared Network Upgrades:	
1	The current estimated shared network upgrades to be determined (TBD)	See DISIS Report
	Network Upgrades (at the IC's expense)	
2	Remote end relaying	\$ 100,000
	Subtotal:	\$100,000
	Transmission Owner Interconnection Facilities (at the IC's expense)	
3	Communications ⁴	\$ See footnote
4	TOIF – wave trap, RTU, real time data, etc at Cornell	\$ 750,000
	Subtotal:	\$750,000
	Total Cost	\$850,000

Table 2 - Required Interconnection Projects³

 $^{^{3}}$ The cost estimates are 2019 dollars with an accuracy level of ±20%.

⁴ It is the Requester's responsibility to provide both the data circuit and communication circuits, see Section 1.f

Appendix A

Figure A-1. General vicinity location map of the SPS facility

- END OF REPORT -