

# GENERATOR INTERCONNECTION AFFECTED SYSTEM IMPACT STUDY REPORT

ASGI-2016-011 ASGI-2016-012 ASGI-2016-013

Published June 2017

By SPP Generator Interconnections Dept.

## **REVISION HISTORY**

| Date       | Author | Change Description                                                                                      |  |  |  |  |
|------------|--------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| 06/30/2017 | SPP    | Affected System Impact Study for ASGI-2016-011, ASGI-2016-012, & ASGI-2016-013 Report Revision 0 Issued |  |  |  |  |
|            |        |                                                                                                         |  |  |  |  |

## EXECUTIVE SUMMARY

An Affected System Interconnection Customer has requested an Affected System Impact Study (ASIS) consistent with Southwest Power Pool (SPP) Open Access Transmission Tariff (OATT) for interconnection requests into the system of Peoples Electric Cooperative (PEC). The PEC facilities connect with the facilities of Southwestern Power Administration (SWPA) and Western Farmers Electric Cooperative (WFEC). This report will detail the results from the three Group 14 requests in this study: ASGI-2016-011, ASGI-2016-012, & ASGI-2016-013. All three requests are thermal units totaling 7.4, 61.7, and 4.9 MW, respectively.

This ASIS addresses the effects of the proposed generators on the SPP transmission system based on the system topology and requests included in the SPP DISIS-2016-001 study:

- ASGI-2016-011 requested the interconnection of three (3) Caterpillar G3520H Gas Engines and associated facilities interconnecting to the PEC distribution system served from the PEC Gerty substation, which connects to SWPA facilities at the Allen 138 kV tap.
- ASGI-2016-012 requested the interconnection of twenty-five (25) Caterpillar G3520H Gas Engines and associated facilities interconnecting to the PEC distribution system served from the PEC Centrahoma substation, which connects to SWPA facilities at the Tupelo 138 kV substation.
- ASGI-2016-013 requested the interconnection of two (2) Caterpillar G3520H Gas Engines and associated facilities interconnecting to the PEC distribution system served from the PEC Ashland 138 kV substation on the WFEC 138 kV line between Coalgate and Pittsburgh.

Power flow and stability analysis from this ASIS has determined that ASGI-2016-011, ASGI-2016-012, & ASGI-2016-013 can interconnect all of their respective generation (mentioned above) with Energy Resource Interconnection Service (ERIS) prior to the completion of the required Network Upgrades listed within **Table 2** of this report. It should be noted that although this ASIS analyzed many of the more-probable contingencies, it is not an all-inclusive list that can account for every operational situation. Additionally, the generator may not be able to inject any power onto the Transmission System due to constraints that fall below the threshold of mitigation for a Generator Interconnection request. Because of this, it is likely that the Customer(s) may be required to reduce their generation output to **0 MW** under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Transient stability analysis for this ASIS has determined that no issues were observed for the transmission system for the forty-nine (49) selected faults for the interconnection of ASGI-2016-011, ASGI-2016-012, & ASGI-2016-013. As discussed above, this amount may be reduced further dependent upon system conditions.

Nothing in this study should be construed as a guarantee of delivery or transmission service. If the customer(s) wishes to move power across the facilities of SPP, a separate request for transmission service must be made on Southwest Power Pool's OASIS by the Customer(s).

## TABLE OF CONTENTS

| Revision Historyi                   |
|-------------------------------------|
| Executive Summary i                 |
| Table of Contentsii                 |
| Purpose1                            |
| Facilities                          |
| Generating Facilities               |
| Power Flow Analysis                 |
| Model Preparation                   |
| Voltage7                            |
| Results                             |
| Curtailment and System Reliability8 |
| Stability Analysis                  |
| Model Preparation                   |
| Short Circuit Analysis              |
| Conclusion                          |

## PURPOSE

An Affected System Interconnection Customer has requested an Affected System Impact Study (ASIS) consistent with the SPP OATT for interconnection requests into the system of PEC. The PEC facilities connect with the facilities of SWPA and WFEC.

The purpose of this study is to evaluate the impacts of interconnecting the following generators on the SPP transmission system based on the system topology and requests included in the SPP DISIS-2016-001 study:

- ASGI-2016-011 requested the interconnection of three (3) Caterpillar G3520H Gas Engines and associated facilities interconnecting to the PEC distribution system served from the PEC Gerty substation, which connects to SWPA facilities at the Allen 138 kV tap.
- ASGI-2016-012 requested the interconnection of twenty-five (25) Caterpillar G3520H Gas Engines and associated facilities interconnecting to the PEC distribution system served from the PEC Centrahoma substation, which connects to SWPA facilities at the Tupelo 138 kV substation.
- ASGI-2016-013 requested the interconnection of two (2) Caterpillar G3520H Gas Engines and associated facilities interconnecting to the PEC distribution system served from the PEC Ashland 138 kV substation on the WFEC 138 kV line between Coalgate and Pittsburgh.

The Affected System Interconnection Customer(s) have requested these amounts to be studied with ERIS to commence on or around June 1, 2017.

The ASIS considers the Base Case as well as all Generating Facilities (and with respect to (b) below, any identified Network Upgrades associated with such higher queued interconnection) that, on the date the ASIS is commenced:

- a) are directly interconnected to the Transmission System;
- b) are interconnected to Affected Systems and may have an impact on the Interconnection Request;
- c) have a pending higher queued Interconnection Request to interconnect to the Transmission System listed in **Table 1**; or
- d) have no Queue Position but have executed an LGIA or requested that an unexecuted LGIA be filed with FERC.

Any changes to these assumptions, for example, one or more of the previously queued requests not included within this study execute an interconnection agreement and commencing commercial operation, may require a re-study of this ASIS at the expense of the Customer(s).

Nothing within this System Impact Study constitutes a request for transmission service or confers upon the Interconnection Customer(s) any right to receive transmission service rights. Should the Customer(s) require transmission service, those rights should be requested through SPP's Open Access Same-Time Information System (OASIS) or that of the applicable transmission provider.

This ASIS included prior queued generation interconnection requests. Those listed within **Table 1** are the generation interconnection requests that are assumed to have rights to either full or partial interconnection service prior to the requested in-service for this ASIS. Also listed in Table 1 are both the amount of MW of interconnection service expected at the effective time of this study and the total

Southwest Power Pool, Inc.

| Project       | MW    | Total<br>MW | Fuel<br>Source | POI                                 | Status               |
|---------------|-------|-------------|----------------|-------------------------------------|----------------------|
| GEN-2015-036  | 303.6 | 303.6       | Wind           | Johnston County 345kV<br>Substation | FACILITY STUDY STAGE |
| GEN-2016-028  | 100   | 100         | Wind           | Clayton 138 kV Sub                  | FACILITY STUDY STAGE |
| GEN-2016-030  | 100   | 100         | Solar          | Brown 138 kV                        | FACILITY STUDY STAGE |
| GEN-2016-063  | 200   | 200         | Wind           | Hugo-Sunnyside 345 kV               | FACILITY STUDY STAGE |
| ASGI-2016-011 | 7.4   | 7.4         | Thermal        | Allen Tap 138 kV                    | Current Study        |
| ASGI-2016-012 | 61.7  | 61.7        | Thermal        | Tupelo 138 kV                       | Current Study        |
| ASGI-2016-013 | 4.9   | 4.9         | Thermal        | Ashland 138 kV                      | Current Study        |

## Table 1: Generation Requests Included within ASIS

This ASIS was required because the Affected System Interconnection Customer(s) are requesting interconnection at a location electrically close to the SPP system.

**Table 2** below lists the higher queued required upgrade projects for which these requests have cost responsibility. DISIS-2016-001 Group 14 Impact Study was posted February 28, 2017.

DISIS-2016-001 reports can be located at the following Generation Interconnection Study URL: <u>http://sppoasis.spp.org/documents/swpp/transmission/GenStudies.cfm?YearType=2016 Impact Studies</u>

ASGI-2016-011, ASGI-2016-012, & ASGI-2016-013 are included as prior queued to DISIS-2016-002 cluster and will be evaluated for impacts prior to the DISIS-2016-002 study.

### Table 2: Upgrade Projects Required for Interconnection Service

| Upgrade Project | Туре | Description | Status | Study Assignment |
|-----------------|------|-------------|--------|------------------|
| Currently, None |      |             |        |                  |

Any changes to these assumptions may require a re-study of this ASIS at the expense of the Customer(s).

Nothing in this System Impact Study constitutes a request for transmission service or grants the Interconnection Customer(s) any rights to transmission service.

## FACILITIES

## **GENERATING FACILITIES**

ASGI-2016-011 requested the interconnection of three (3) Caterpillar G3520H Gas Engines and associated facilities interconnecting to the PEC distribution system served from the PEC Gerty substation, which connects to SWPA facilities at the Allen 138 kV tap in Hughes County, Oklahoma.

ASGI-2016-012 requested the interconnection of twenty-five (25) Caterpillar G3520H Gas Engines and associated facilities interconnecting to the PEC distribution system served from the PEC Centrahoma substation, which connects to SWPA facilities at the Tupelo 138 kV substation in Coal County, Oklahoma.

ASGI-2016-013 requested the interconnection of two (2) Caterpillar G3520H Gas Engines and associated facilities interconnecting to the PEC distribution system served from the PEC Ashland 138 kV substation on the 138 kV WFEC line between Coalgate and Pittsburgh, in Coal County, Oklahoma. Figures 1-3 depict the one-line diagram for the POI and the Interconnection Request(s).





Figure 2: Proposed ASGI-2016-012 Configuration and Request Power Flow Model





#### Figure 3: Proposed ASGI-2016-013 Configuration and Request Power Flow Model

## BASE CASE NETWORK UPGRADES

The Network Upgrades included within the cases used for this Affected System Impact Study are those facilities that are a part of the SPP Transmission Expansion Plan or the Balanced Portfolio projects. These facilities have an approved Notification to Construct (NTC), or are in construction stages and expected to be in-service at the effective time of this study. No other upgrades were included for this ASIS. If for some reason, construction on these projects is delayed or discontinued, a restudy may be needed to determine the interconnection service availability of the Customer(s).

## POWER FLOW ANALYSIS

Power flow analysis is used to determine if the transmission system can accommodate the injection from the request without violating thermal or voltage transmission planning criteria.

## MODEL PREPARATION

Power flow analysis was performed using modified versions of the 2015 series of 2016 ITP Near-Term study models including these seasonal models:

- Year 1 (2016) Winter Peak (16WP)
- Year 2 (2017) Spring (17G)
- Year 2 (2017) Summer Peak (17SP)
- Year 5 (2020) Light (20L)
- Year 5 (2020) Summer (20SP)
- Year 5 (2020) Winter (20WP) peak
- Year 10 (2025) Summer (25SP) peak

To incorporate the Interconnection Customers' request, a re-dispatch of existing generation within SPP was performed with respect to the amount of the Customers' injection.

For Variable Energy Resources (VER) (solar/wind) in each power flow case, ERIS, is evaluated for the generating plants within a geographical area of the interconnection request(s) for the VERs dispatched at 100% nameplate of maximum generation. The VERs in the remote areas is dispatched at 20% nameplate of maximum generation. SPP projects are dispatched across the SPP footprint using load factor ratios. MISO projects are dispatched across the SPP footprint using load factor ratios.

Peaking units are not dispatched in the Year 2 spring and Year 5 light, or in the "High VER" summer and winter peaks. To study peaking units' impacts, the Year 1 winter peak, Year 2 summer peak, and Year 5 summer and winter peaks, and Year 10 summer peak models are developed with peaking units dispatched at 100% of the nameplate rating and VERs dispatched at 20% of the nameplate rating. Each interconnection request is also modeled separately at 100% nameplate for certain analyses.

All generators (VER and peaking) that requested Network Resource Interconnection Service (NRIS) are dispatched in an additional analysis into the interconnecting Transmission Owner's (T.O.) area at 100% nameplate with Energy Resource Interconnection Service (ERIS) only requests at 80% nameplate. This method allows for identification of network constraints that are common between regional groupings to have affecting requests share the mitigating upgrade costs throughout the cluster.

For this ASIS, only the previous queued requests listed in **Table 1** were assumed to be in-service at 100% dispatch.

## STUDY METHODOLOGY AND CRITERIA

#### THERMAL OVERLOADS

Network constraints are found by using PSS/E AC Contingency Calculation (ACCC) analysis with PSS/E MUST First Contingency Incremental Transfer Capability (FCITC) analysis on the entire cluster grouping dispatched at the various levels previously mentioned.

For Energy Resource Interconnection Service (ERIS), thermal overloads are determined for system intact (n-0) (greater than or equal to 100% of Rate A - normal) and for contingency (n-1) (greater than or equal to 100% of Rate B – emergency) conditions.

The overloads are then screened to determine which of generator interconnection requests have at least

- 3% Distribution Factor (DF) for system intact conditions (n-0),
- 20% DF upon outage based conditions (n-1),
- or 3% DF on contingent elements that resulted in a non-converged solution.

Interconnection Requests that requested Network Resource Interconnection Service (NRIS) are also studied in a separate NRIS analysis to determine if any constraint measured greater than or equal to a 3% DF. If so, these constraints are also considered for transmission reinforcement under NRIS.

The contingency set includes all SPP control area branches and ties 69kV and above, first tier Non-SPP control area branches and ties 115 kV and above, any defined contingencies for these control areas, and generation unit outages for the SPP control areas with SPP reserve share program redispatch.

The monitored elements include all SPP control area branches, ties, and buses 69 kV and above, and all first tier Non-SPP control area branches and ties 69 kV and above. NERC Power Transfer Distribution Flowgates for SPP and first tier Non-SPP control area are monitored. Additional NERC Flowgates are monitored in second tier or greater Non-SPP control areas. Voltage monitoring was performed for SPP control area buses 69 kV and above.

#### VOLTAGE

For non-converged power flow solutions that are determined to be caused by lack of voltage support, appropriate transmission support will be determined to mitigate the constraint.

After all thermal overload and voltage support mitigations are determined; a full ACCC analysis is then performed to determine voltage constraints. The following voltage performance guidelines are used in accordance with the Transmission Owner local planning criteria.

| Transmission Owner | Voltage Criteria | Voltage Criteria |
|--------------------|------------------|------------------|
|                    | (System Intact)  | (Contingency)    |
| AEPW               | 0.95 – 1.05 pu   | 0.92 – 1.05 pu   |
| GRDA               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| SWPA               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| OKGE               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| OMPA               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| WFEC               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| SWPS               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| MIDW               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| SUNC               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| KCPL               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| INDN               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| SPRM               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| NPPD               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| WAPA               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| WERE L-V           | 0.95 – 1.05 pu   | 0.93 – 1.05 pu   |
| WERE H-V           | 0.95 – 1.05 pu   | 0.95 – 1.05 pu   |
| EMDE L-V           | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| EMDE H-V           | 0.95 – 1.05 pu   | 0.92 – 1.05 pu   |
| LES                | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |
| OPPD               | 0.95 – 1.05 pu   | 0.90 – 1.05 pu   |

#### <u>SPP Areas (69kV+):</u>

#### SPP Buses with more stringent voltage criteria:

| Bus Name/Number            | Voltage Criteria<br>(System Intact) | Voltage Criteria<br>(Contingency) |
|----------------------------|-------------------------------------|-----------------------------------|
| TUCO 230kV 525830          | 0.925 – 1.05 pu                     | 0.925 – 1.05 pu                   |
| Wolf Creek 345kV<br>532797 | 0.985 – 1.03 pu                     | 0.985 – 1.03 pu                   |
| FCS 646251                 | 1.001 – 1.047 pu                    | 1.001 – 1.047 pu                  |

#### Affected System Areas (115kV+):

| Transmission Owner | Voltage Criteria<br>(System Intact) | Voltage Criteria<br>(Contingency) |
|--------------------|-------------------------------------|-----------------------------------|
| AECI               | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |

| Transmission Owner | Voltage Criteria<br>(System Intact) | Voltage Criteria<br>(Contingency) |
|--------------------|-------------------------------------|-----------------------------------|
| EES-EAI            | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| LAGN               | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| EES                | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| AMMO               | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| CLEC               | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| LAFA               | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| LEPA               | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| XEL                | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| MP                 | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| SMMPA              | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| GRE                | 0.95 – 1.05 pu                      | 0.90 – 1.10 pu                    |
| OTP                | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| OTP-H (115kV+)     | 0.97 – 1.05 pu                      | 0.92 – 1.10 pu                    |
| ALTW               | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| MEC                | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| MDU                | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| SPC                | 0.95 – 1.05 pu                      | 0.95 – 1.05 pu                    |
| DPC                | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |
| ALTE               | 0.95 – 1.05 pu                      | 0.90 – 1.05 pu                    |

The constraints identified through the voltage scan are then screened for the following for each interconnection request. 1) 3% DF on the contingent element and 2) 2% change in pu voltage. In certain conditions, engineering judgement was used to determine whether or not a generator had impacts to voltage constraints.

#### RESULTS

The ASIS ACCC analysis indicates that the Affected System Interconnection Customer(s) can interconnect their generation at the available MW amount listed in the results tables before all required upgrades listed within the DISIS-2016-001 studies or latest iteration can be placed into service. ACCC results for the ASIS can be found in **Table 3**, **Table 4** and **Table 5**.

**Table 3** and **Table 4** results are based on the study assumption of system conditions prior to the DISIS-2016-002 identified and assigned Network Upgrades.

Constraints listed in **Table 5** do not require additional transmission reinforcement for Interconnection Service, but could require Interconnection Customer to reduce generation in operational conditions. These transmission constraints occur when this study's generation is dispatched into the SPP footprint for Energy Resource Interconnection Service (ERIS).

#### CURTAILMENT AND SYSTEM RELIABILITY

In no way does this study guarantee operation for all periods of time. It should be noted that although this study analyzed many of the most probable contingencies, it is not an all-inclusive list and cannot account for every operational situation. Because of this, it is likely that the Customer(s) may be required to reduce their generation output to **0 MW** under certain system conditions to allow system operators to maintain the reliability of the transmission network.

#### Table 3: Thermal Constraints Requiring Additional Transmission Reinforcements

| Dispatch<br>Group | Season | Source | Flow | Monitored Element | RATEA<br>(MVA) | RATEB<br>(MVA) | TDF | TC%<br>LOADING | Max MW<br>Available | Contingency |
|-------------------|--------|--------|------|-------------------|----------------|----------------|-----|----------------|---------------------|-------------|
|                   |        |        |      | Currently, None   |                |                |     |                |                     |             |

#### Table 4: Voltage Constraints Requiring Additional Transmission Reinforcements

| Dispatch<br>Group | Season | Source | Flow | Monitored Element | RATEA<br>(MVA) | RATEB<br>(MVA) | TDF | TC%<br>LOADING | Max MW<br>Available | Contingency |
|-------------------|--------|--------|------|-------------------|----------------|----------------|-----|----------------|---------------------|-------------|
|                   |        |        |      | Currently, None   |                |                |     |                |                     |             |

### Table 5: Constraints that do not require additional Transmission Reinforcements

| Dispatch<br>Group | Season | Source | Flow | Monitored Element | RATEA<br>(MVA) | RATEB<br>(MVA) | TDF | TC%<br>LOADING | Contingency |
|-------------------|--------|--------|------|-------------------|----------------|----------------|-----|----------------|-------------|
|                   |        |        |      | Currently, None   |                |                |     |                |             |

## STABILITY ANALYSIS

Transient stability analysis is used to determine if the transmission system can maintain angular stability and ensure bus voltages stay within planning criteria bandwidth during and after a disturbance while considering the addition of a generator interconnection request.

## MODEL PREPARATION

Transient stability analysis was performed using modified versions of the 2015 series of Model Development Working Group (MDWG) dynamic study models including the 2016 winter, 2017 and 2025 summer peak dynamic cases. The cases were adapted to resemble the power flow study cases with regards to prior queued generation requests and topology. Finally the prior queued and study generation was dispatched into the SPP footprint. Initial simulations are then carried out for a nodisturbance run of twenty (20) seconds to verify the numerical stability of the model.

## **DISTURBANCES**

Forty-nine (49) contingencies were identified for use in this ASIS. These faults are listed within **Table 6**. These contingencies included three-phase faults and single-phase line faults at locations defined by SPP. Single-phase line faults were simulated by applying fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP current practice.

With the exception of transformers, the typical sequence of events for a three-phase and single-phase fault is as follows:

- 1. apply fault at particular location
- 2. continue fault for five (5) cycles, clear the fault by tripping the faulted facility
- 3. run for an additional twenty (20) cycles, reclose into fault
- 4. continue fault for five (5) cycles, clear the fault by tripping the faulted facility

Transformer faults are typically modeled as three-phase faults, unless otherwise noted. The sequence of events for a transformer fault is as follows:

- 1. apply fault for five (5) cycles
- 2. clear the fault by tripping the affected transformer facility (unless otherwise noted there will be no re-closing into a transformer fault)

| Сс | ontingency Number and Name      | Description                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|----|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1  | FLT_01_TUPELO4_ALLEN4_138kV_3PH | <ul> <li>3PH Fault on the Tupelo (505600) to Allen (505598) 138kV line, near Tupelo.</li> <li>a. Apply fault at the Tupelo 138kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul> |  |  |  |  |

| Contingency Number and Name Description |                                    |                                                                    |  |  |
|-----------------------------------------|------------------------------------|--------------------------------------------------------------------|--|--|
|                                         |                                    | 3PH Fault on the Tupelo (505600) to South Brown (505602)           |  |  |
|                                         |                                    | 138kV line, near Tupelo.                                           |  |  |
|                                         |                                    | a. Apply fault at the Tupelo 138kV bus.                            |  |  |
| 2                                       | FIT 02 TUDELOA CROOWNA 129W 2DH    | b. Clear fault after 5 cycles by tripping the faulted line.        |  |  |
| 2                                       | FE1_02_10FEE04_3DR0WN4_130RV_3FII  | c. Wait 20 cycles, and then re-close the line in (b) back into the |  |  |
|                                         |                                    | fault.                                                             |  |  |
|                                         |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |  |  |
|                                         |                                    | remove fault.                                                      |  |  |
|                                         |                                    | 3PH Fault on the Tupelo (505600) to Atoka West (521188)            |  |  |
|                                         |                                    | 138kV line, near Tupelo.                                           |  |  |
|                                         |                                    | a. Apply fault at the Tupelo 138kV bus.                            |  |  |
| 3                                       | FLT 03 TUPELO4 ATKWEST4 138kV 3PH  | b. Clear fault after 5 cycles by tripping the faulted line.        |  |  |
|                                         |                                    | c. Wait 20 cycles, and then re-close the line in (b) back into the |  |  |
|                                         |                                    | fault.                                                             |  |  |
|                                         |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |  |  |
|                                         |                                    | remove fault.                                                      |  |  |
|                                         |                                    | (F10991) 129 Vine neer Tunele                                      |  |  |
|                                         |                                    | (510001) 130KV IIIIe, liear Tupelo.                                |  |  |
|                                         |                                    | a. Apply fault at the Tupelo ISOKV bus.                            |  |  |
| 4                                       | FLT_04_TUPELO4_ALLENGT4_138kV_3PH  | c Wait 20 cycles and then re-close the line in (h) back into the   |  |  |
|                                         |                                    | fault                                                              |  |  |
|                                         |                                    | d Leave fault on for 5 cycles then trip the line in (b) and        |  |  |
|                                         |                                    | remove fault.                                                      |  |  |
|                                         |                                    | 3PH Fault on the Tupelo (505600) to Tupelo Tap (521071)            |  |  |
|                                         |                                    | 138kV line, near Tupelo.                                           |  |  |
|                                         |                                    | a. Apply fault at the Tupelo 138kV bus.                            |  |  |
| 5                                       |                                    | b. Clear fault after 5 cycles by tripping the faulted line.        |  |  |
| 5                                       | rL1_05_10rEL04_10rL01r4_136Kv_5rH  | c. Wait 20 cycles, and then re-close the line in (b) back into the |  |  |
|                                         |                                    | fault.                                                             |  |  |
|                                         |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |  |  |
|                                         |                                    | remove fault.                                                      |  |  |
|                                         |                                    | 3PH Fault on the Tupelo (505600) to WFEC Tupelo(520406)            |  |  |
|                                         |                                    | 138kV line, near Tupelo.                                           |  |  |
|                                         |                                    | a. Apply fault at the Tupelo 138kV bus.                            |  |  |
| 6                                       | FLT_06_TUPELO4_TUPELO4_138kV_3PH   | b. Clear fault after 5 cycles by tripping the faulted line.        |  |  |
|                                         |                                    | c. wait 20 cycles, and then re-close the line in (b) back into the |  |  |
|                                         |                                    | Iduit.                                                             |  |  |
|                                         |                                    | u. Leave fault off for 5 cycles, then trip the fine in (b) and     |  |  |
|                                         |                                    | 3PH Fault on the South Brown (505602) to Kiersey Junction          |  |  |
|                                         |                                    | South (521109) 138kV line near South Brown                         |  |  |
| 7                                       |                                    | a Apply fault at the South Brown 138kV hus                         |  |  |
|                                         |                                    | h. Clear fault after 5 cycles by tripping the faulted line         |  |  |
|                                         | FLT_07_SBROWN4_KRSYJCTS4_138kV_3PH | c. Wait 20 cycles, and then re-close the line in (b) back into the |  |  |
|                                         |                                    | fault.                                                             |  |  |
|                                         |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |  |  |
|                                         |                                    | remove fault.                                                      |  |  |
|                                         |                                    |                                                                    |  |  |

| Со | ntingency Number and Name             | Description                                                          |
|----|---------------------------------------|----------------------------------------------------------------------|
|    |                                       | 3PH Fault on the South Brown (505602) to Denison (505604)            |
|    |                                       | 138kV line, near South Brown.                                        |
|    |                                       | a. Apply fault at the South Brown 138kV bus.                         |
| 0  | ELT OG CODOWNIA DENICONA 1201-U 2011  | b. Clear fault after 5 cycles by tripping the faulted line.          |
| ð  | FL1_08_SBROWN4_DENISON4_138KV_3PH     | c. Wait 20 cycles, and then re-close the line in (b) back into the   |
|    |                                       | fault.                                                               |
|    |                                       | d. Leave fault on for 5 cycles, then trip the line in (b) and        |
|    |                                       | remove fault.                                                        |
|    |                                       | 3PH Fault on the South Brown (505602) to Kiersey Junction            |
|    |                                       | North (521108) 138kV line, near South Brown.                         |
|    |                                       | a. Apply fault at the South Brown 138kV bus.                         |
| 0  | ΕΙ Τ ΛΩ ΟΡΟΛΙΜΝΙΑ ΚΡΟΥΙΟΤΝΑ 129ΗΟ 200 | b. Clear fault after 5 cycles by tripping the faulted line.          |
| 9  | FL1_09_3DK0WN4_KK31JC1N4_130KV_3FH    | c. Wait 20 cycles, and then re-close the line in (b) back into the   |
|    |                                       | fault.                                                               |
|    |                                       | d. Leave fault on for 5 cycles, then trip the line in (b) and        |
|    |                                       | remove fault.                                                        |
|    |                                       | 3PH Fault on the South Brown (505602) to Brown (515157)              |
|    |                                       | 138kV line, near South Brown.                                        |
|    |                                       | a. Apply fault at the South Brown 138kV bus.                         |
| 10 | FIT 10 CRDOWNA RDOWNA 129-W 2DH       | b. Clear fault after 5 cycles by tripping the faulted line.          |
|    | FLI_I0_3DROWIN4_DROWIN4_I30RV_3FR     | c. Wait 20 cycles, and then re-close the line in (b) back into the   |
|    |                                       | fault.                                                               |
|    |                                       | d. Leave fault on for 5 cycles, then trip the line in (b) and        |
|    |                                       | remove fault.                                                        |
|    |                                       | 3PH Fault on the South Brown (505602) to Russett (521044)            |
|    |                                       | 138kV line, near South Brown.                                        |
|    |                                       | a. Apply fault at the South Brown 138kV bus.                         |
| 11 | FLT 11 SBROWN4 RUSSETT4 138kV 3PH     | b. Clear fault after 5 cycles by tripping the faulted line.          |
|    |                                       | c. Wait 20 cycles, and then re-close the line in (b) back into the   |
|    |                                       | fault.                                                               |
|    |                                       | d. Leave fault on for 5 cycles, then trip the line in (b) and        |
|    |                                       | remove fault.                                                        |
|    |                                       | 3PH Fault on the South Brown (505602) to Colbert Tap                 |
|    |                                       | (515159) 138kV line, near South Brown.                               |
|    |                                       | a. Apply fault at the South Brown 138kV bus.                         |
| 12 | FLT 12 SBROWN4 COLBRTP4 138kV 3PH     | b. Clear fault after 5 cycles by tripping the faulted line.          |
|    |                                       | c. Wait 20 cycles, and then re-close the line in (b) back into the   |
|    |                                       | fault.                                                               |
|    |                                       | d. Leave fault on for 5 cycles, then trip the line in (b) and        |
|    |                                       |                                                                      |
|    |                                       | 3PH Fault on the colbert Tap (515159) to Butterfield                 |
| 13 |                                       | (515176) 138KV line, near Colbert Tap.                               |
|    |                                       | a. Appry fault at the Coldert Tap 138KV bus.                         |
|    | FLT_13_COLBRTP4_BUTRFLD4_138kV_3PH    | b. Clear fault after 5 cycles by tripping the faulted line.          |
|    | _                                     | c. wait 20 cycles, and then re-close the line in (b) back into the   |
|    |                                       | Idult. $d$ Leave fault on for 5 cycles then trip the line in (b) and |
|    |                                       | u. Leave fault on for 5 cycles, then trip the line in (b) and        |
|    |                                       | remove fault.                                                        |

| Со | ntingency Number and Name          | Description                                                        |
|----|------------------------------------|--------------------------------------------------------------------|
|    |                                    | 3PH Fault on the Colbert Tap (515159) to Bodle (515155)            |
|    |                                    | 138kV line, near Colbert Tap.                                      |
|    |                                    | a. Apply fault at the Colbert Tap 138kV bus.                       |
| 1/ | FLT 14 COLBRTDA BODI FA 1386V 3DH  | b. Clear fault after 5 cycles by tripping the faulted line.        |
| 14 | TET_14_COLDRIF4_DODLE4_130KV_5FII  | c. Wait 20 cycles, and then re-close the line in (b) back into the |
|    |                                    | fault.                                                             |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |
|    |                                    | remove fault.                                                      |
|    |                                    | 3PH Fault on the Colbert (520860) to OKGE Colbert (515193)         |
|    |                                    | 138kV line, near Colbert.                                          |
|    |                                    | a. Apply fault at the Colbert 138kV bus.                           |
| 15 | FLT_15_COLBERT4_COLBRT4_138kV_3PH  | b. Clear fault after 5 cycles by tripping the faulted line.        |
|    |                                    | c. wait 20 cycles, and then re-close the line in (b) back into the |
|    |                                    | Iduit.                                                             |
|    |                                    | u. Leave fault of 101 5 cycles, then trip the fille fill (b) and   |
|    |                                    | 3PH Fault on the Colbert (520860) to Kiersey (520963) 138kV        |
|    |                                    | line near Colhert                                                  |
|    |                                    | a. Apply fault at the Colbert 138kV bus.                           |
| 16 |                                    | b. Clear fault after 5 cycles by tripping the faulted line.        |
|    | FLT_16_COLBERT4_KIERSEY4_138kV_3PH | c. Wait 20 cycles, and then re-close the line in (b) back into the |
|    |                                    | fault.                                                             |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |
|    |                                    | remove fault.                                                      |
|    |                                    | 3PH Fault on the Colbert (520860) to Seaway (520426) 138kV         |
|    |                                    | line, near Colbert.                                                |
|    |                                    | a. Apply fault at the Colbert 138kV bus.                           |
| 17 | FLT_17_COLBERT4_SEAWAY4_138kV_3PH  | b. Clear fault after 5 cycles by tripping the faulted line.        |
|    |                                    | c. wait 20 cycles, and then re-close the line in (b) back into the |
|    |                                    | d Leave fault on for 5 cycles, then trip the line in (b) and       |
|    |                                    | remove fault.                                                      |
|    |                                    | 3PH Fault on the Durant (520884) to Bennington (520826)            |
|    |                                    | 138kV line, near Durant.                                           |
|    |                                    | a. Apply fault at the Durant 138kV bus.                            |
| 10 | ΕΙ Τ 18 ΠΗΡΑΝΤΆ ΒΕΝΝΟΤΝΑ 139-Ν 20Η | b. Clear fault after 5 cycles by tripping the faulted line.        |
| 10 | TEI_IO_DORANT4_DENNGIN4_ISOKV_SFII | c. Wait 20 cycles, and then re-close the line in (b) back into the |
|    |                                    | fault.                                                             |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |
|    |                                    | remove fault.                                                      |
|    |                                    | 3PH Fault on the Durant (520884) to South Coleman (521049)         |
|    |                                    | 130KV IIIIe, near Durant 128kV bus                                 |
|    |                                    | a. Apply fault at the Durant ISOKY DUS.                            |
| 19 | FLT_19_DURANT4_SCOLEMN4_138kV_3PH  | whit 20 cycles and then re-close the line in (b) back into the     |
|    |                                    | fault                                                              |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |
|    |                                    | remove fault.                                                      |
|    |                                    |                                                                    |

| Со | ntingency Number and Name          | Description                                                        |
|----|------------------------------------|--------------------------------------------------------------------|
|    |                                    | 3PH Fault on the OKGE Russett (515120) to Russett (521044)         |
|    |                                    | 138kV line, near OKGE Russett.                                     |
|    |                                    | a. Apply fault at the OKGE Russett 138kV bus.                      |
| 20 | ELT 20 DUCCETA DUCCETTA 138by 3DH  | b. Clear fault after 5 cycles by tripping the faulted line.        |
| 20 | FL1_20_K035E14_K035E114_150KV_5FI1 | c. Wait 20 cycles, and then re-close the line in (b) back into the |
|    |                                    | fault.                                                             |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |
|    |                                    | remove fault.                                                      |
|    |                                    | 3PH Fault on the OKGE Russett (515120) to Johnson County           |
|    |                                    | (514808) 138kV line, near OKGE Russett.                            |
|    |                                    | a. Apply fault at the OKGE Russett 138kV bus.                      |
| 21 | FLT_21_RUSSET4_JOHNCO4_138kV_3PH   | b. Clear fault after 5 cycles by tripping the faulted line.        |
|    |                                    | c. Wait 20 cycles, and then re-close the line in (b) back into the |
|    |                                    | tault.                                                             |
|    |                                    | a. Leave fault on for 5 cycles, then trip the line in (b) and      |
|    |                                    | 2DH Fault on the OKCE Duggett (E1E120) to Classes Madill           |
|    |                                    | (515147) 138kV line near OKCE Russett                              |
|    |                                    | a Apply fault at the OKGF Russett 138kV hus                        |
| 22 | a. Apply fault at the Ol           | h Clear fault after 5 cycles by tripping the faulted line          |
|    | FLT_22_RUSSET4_GLASSES4_138kV_3PH  | c Wait 20 cycles and then re-close the line in (b) back into the   |
|    |                                    | fault.                                                             |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |
|    |                                    | remove fault.                                                      |
|    |                                    | 3PH Fault on the OKGE Russett (515120) to Springdale               |
|    |                                    | (515172) 138kV line, near OKGE Russett.                            |
|    |                                    | a. Apply fault at the OKGE Russett 138kV bus.                      |
| 23 | FLT_23_RUSSET4_SPRNDAL4_138kV_3PH  | b. Clear fault after 5 cycles by tripping the faulted line.        |
|    |                                    | c. Wait 20 cycles, and then re-close the line in (b) back into the |
|    |                                    | fault.                                                             |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |
|    |                                    | remove fault.                                                      |
|    |                                    | line near Allen                                                    |
|    |                                    | a Apply fault at the Allen 138kV bus                               |
|    |                                    | h Clear fault after 5 cycles by tripping the faulted line          |
| 24 | FLT_24_ALLEN4_EXPLOR4_138kV_3PH    | c. Wait 20 cycles, and then re-close the line in (b) back into the |
|    |                                    | fault.                                                             |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |
|    |                                    | remove fault.                                                      |
|    |                                    | 3PH Fault on the Explorer (505596) to Greasy Creek (505595)        |
|    |                                    | 138kV line, near Explorer.                                         |
|    |                                    | a. Apply fault at the Explorer 138kV bus.                          |
| 25 | FLT 25 FXPLOR4 CRFASVC4 138-W 20H  | b. Clear fault after 5 cycles by tripping the faulted line.        |
|    |                                    | c. Wait 20 cycles, and then re-close the line in (b) back into the |
|    |                                    | fault.                                                             |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and      |
|    |                                    | remove fault.                                                      |

| Со | ntingency Number and Name          | Description                                                                |
|----|------------------------------------|----------------------------------------------------------------------------|
|    |                                    | 3PH Fault on the Greasy Creek (505595) to Weleetka (505592)                |
|    |                                    | 138kV line, near Greasy Creek.                                             |
|    |                                    | a. Apply fault at the Greasy Creek 138kV bus.                              |
| 26 | FLT_26_GREASYC4_WELEETKA4_138kV_3P | b. Clear fault after 5 cycles by tripping the faulted line.                |
| 20 | Н                                  | c. Wait 20 cycles, and then re-close the line in (b) back into the         |
|    |                                    | fault.                                                                     |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and              |
|    |                                    | remove fault.                                                              |
|    |                                    | 3PH Fault on the Weleetka (505592) to Checota (505594)                     |
|    |                                    | 138kV line, near Weleetka.                                                 |
|    |                                    | a. Apply fault at the Weleetka 138kV bus.                                  |
| 27 | FL1_27_WELEE1KA4_CHEC01A4_138KV_3P | b. Clear fault after 5 cycles by tripping the faulted line.                |
|    | п                                  | c. wait 20 cycles, and then re-close the line in (b) back into the         |
|    |                                    | Iduit.                                                                     |
|    |                                    | u. Leave fault off for 5 cycles, then trip the fine in (b) and             |
|    |                                    | 3PH Foult on the Weleetka (505502) to AFP Weleetka                         |
|    |                                    | (510902) 138kV line near Weleetka                                          |
|    |                                    | a Apply fault at the Weleetka 138kV hus                                    |
|    | FLT 28 WELEETKA4 WELETK4 138kV 3P  | b. Clear fault after 5 cycles by tripping the faulted line.                |
| 28 | Н                                  | c. Wait 20 cycles, and then re-close the line in (b) back into the         |
|    |                                    | fault.                                                                     |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and              |
|    |                                    | remove fault.                                                              |
|    | FLT_29_WELEETKA4_WELEETK5_138_161k | 3PH Fault on the Weleetka (505592) 138kV to (505590) 69kV                  |
|    |                                    | to (505591) 13.8kV transformer circuit 1, near Weleetka                    |
| 29 |                                    | 138kV.                                                                     |
|    | V_11 11                            | a. Apply fault at the Weleetka 138kV bus.                                  |
|    |                                    | b. Clear fault after 5 cycles by tripping the faulted line.                |
|    |                                    | 3PH Fault on the Weleetka (505592) to Fixico Tap (510877)                  |
|    |                                    | 138kV line, near Weleetka.                                                 |
|    |                                    | a. Apply fault at the weleetka 138kv bus.                                  |
| 30 | FLT_30_WELETK4_FIXCT4_138kV_3PH    | b. Clear fault after 5 cycles by thipping the faulted line.                |
|    |                                    | foult                                                                      |
|    |                                    | d Leave fault on for 5 cycles then trin the line in (h) and                |
|    |                                    | remove fault.                                                              |
|    |                                    | 3PH Fault on the Weleetka (505592) to Dustin (510921)                      |
|    |                                    | 138kV line, near Weleetka.                                                 |
|    |                                    | a. Apply fault at the Weleetka 138kV bus.                                  |
| 21 | ELT 21 WELETVA DISTINA 120 V 201   | b. Clear fault after 5 cycles by tripping the faulted line.                |
| 31 | FLI_31_WELEIK4_DUSIIN4_138KV_3PH   | c. Wait 20 cycles, and then re-close the line in (b) back into the         |
|    |                                    | fault.                                                                     |
|    |                                    | d. Leave fault on for 5 cycles, then trip the line in (b) and              |
|    |                                    | remove fault.                                                              |
|    |                                    | 3PH Fault on the Weleetka (505592) to Henryetta (510892)                   |
|    |                                    | 138kV line, near Weleetka.                                                 |
| 32 |                                    | a. Apply fault at the Weleetka 138kV bus.                                  |
|    | FLT_32_WELETK4_HENRYET4_138kV_3PH  | b. Clear fault after 5 cycles by tripping the faulted line.                |
|    | ·                                  | c. wait 20 cycles, and then re-close the line in (b) back into the         |
|    |                                    | Iduit.                                                                     |
|    |                                    | u. Leave fault on for 5 cycles, then trip the line in (b) and remove fault |
|    |                                    | i chiove iduit.                                                            |

| Со | ntingency Number and Name             | Description                                                                                                                      |
|----|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|    |                                       | 3PH Fault on the Weleetka (505592) to EC.Hen (510923)                                                                            |
|    |                                       | 138kV line, near Weleetka.                                                                                                       |
|    |                                       | a. Apply fault at the Weleetka 138kV bus.                                                                                        |
| 33 | FLT 33 WELETK4 ECHEN4 138kV 3PH       | b. Clear fault after 5 cycles by tripping the faulted line.                                                                      |
|    |                                       | c. Wait 20 cycles, and then re-close the line in (b) back into the                                                               |
|    |                                       | fault.                                                                                                                           |
|    |                                       | d. Leave fault on for 5 cycles, then trip the line in (b) and                                                                    |
|    |                                       | remove fault.                                                                                                                    |
|    |                                       | to (510041) 12 9kW transformer girguit 2 near Welestka                                                                           |
| 21 | FLT_34_WELETK4_WELEETK2_138_69kV_1    | 1201-W                                                                                                                           |
| 54 | PH                                    | a Apply fault at the Weleetka 138kV bus                                                                                          |
|    |                                       | h Clear fault after 5 cycles by tripping the faulted transformer                                                                 |
|    |                                       | 3PH Fault on the Ashland (520818) to Colgate (520862)                                                                            |
|    |                                       | 138kV line, near Ashland.                                                                                                        |
|    |                                       | a. Apply fault at the Ashland 138kV bus.                                                                                         |
| 25 |                                       | b. Clear fault after 5 cycles by tripping the faulted line.                                                                      |
| 35 | FL1_35_A5HLAND4_COLGATE4_138KV_3PH    | c. Wait 20 cycles, and then re-close the line in (b) back into the                                                               |
|    |                                       | fault.                                                                                                                           |
|    |                                       | d. Leave fault on for 5 cycles, then trip the line in (b) and                                                                    |
|    |                                       | remove fault.                                                                                                                    |
|    |                                       | 3PH Fault on the Ashland (520818) to Pittsburg (521030)                                                                          |
|    |                                       | 138kV line, near Ashland.                                                                                                        |
|    |                                       | a. Apply fault at the Ashland 138kV bus.                                                                                         |
| 36 | FLT_36_ASHLAND4_PITTSBG4_138kV_3PH    | b. Clear fault after 5 cycles by tripping the faulted line.                                                                      |
|    |                                       | c. wait 20 cycles, and then re-close the line in (b) back into the                                                               |
|    |                                       | d Leave fault on for 5 cycles, then trip the line in (b) and                                                                     |
|    |                                       | remove fault                                                                                                                     |
|    |                                       | 3PH Fault on the Colgate (520862) to Tupelo (505600) 138kV                                                                       |
|    |                                       | line, near Colgate.                                                                                                              |
|    |                                       | a. Apply fault at the Colgate 138kV bus.                                                                                         |
| 27 |                                       | b. Clear fault after 5 cycles by tripping the faulted line.                                                                      |
| 57 | FLI_5/_COLGATE4_TOPELO4_TSOKV_SPH     | c. Wait 20 cycles, and then re-close the line in (b) back into the                                                               |
|    |                                       | fault.                                                                                                                           |
|    |                                       | d. Leave fault on for 5 cycles, then trip the line in (b) and                                                                    |
|    |                                       | remove fault.                                                                                                                    |
|    |                                       | 3PH Fault on the Savanna (521047) to Pittsburg (521030)                                                                          |
|    |                                       | 150KV line, near Ashland.                                                                                                        |
|    |                                       | a. Apply fault at the Ashianu 150KV bus.                                                                                         |
| 38 | FLT_38_SAVANNA4_PITTSBG4_138kV_3PH    | b. Clear fault after 5 cycles by thipping the faulted line.<br>c. Wait 20 cycles and then re-close the line in (b) back into the |
|    |                                       | fault                                                                                                                            |
|    |                                       | d. Leave fault on for 5 cycles, then trip the line in (b) and                                                                    |
|    |                                       | remove fault.                                                                                                                    |
|    |                                       | 3PH Fault on the Savanna (521047) to Hartshorne (520934)                                                                         |
|    |                                       | 138kV line, near Ashland.                                                                                                        |
|    |                                       | a. Apply fault at the Ashland 138kV bus.                                                                                         |
| 39 | ΕΙ Τ. 20 ς Δυλννάλ ηλοτείνα 120 μ σου | b. Clear fault after 5 cycles by tripping the faulted line.                                                                      |
|    |                                       | c. Wait 20 cycles, and then re-close the line in (b) back into the                                                               |
|    |                                       | tault.                                                                                                                           |
|    |                                       | a. Leave fault on for 5 cycles, then trip the line in (b) and                                                                    |
|    |                                       | remove fault.                                                                                                                    |

| Co | ntingency Number and Name                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                            | 3PH Fault on the Hartshorne (520934) to Lone Oak (510897)                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                            | 138kV line, near Hartshorne.                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                            | a. Apply fault at the Hartshorne 138kV bus.                                                                                                                                                                                                                                                                                                                                                                                          |
| 40 | FLT 40 HARTSHN4 LONFOAK4 138kV 3PH         | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                                                                                                                                                                                                          |
| 10 |                                            | c. Wait 20 cycles, and then re-close the line in (b) back into the                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                            | fault.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                            | d. Leave fault on for 5 cycles, then trip the line in (b) and                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                            | remove fault.                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                            | 3PH Fault on the Hartshorne (520934) to Manning (520896)                                                                                                                                                                                                                                                                                                                                                                             |
|    |                                            | 138kV line, near Hartshorne.                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                            | a. Apply fault at the Hartshorne 138kV bus.                                                                                                                                                                                                                                                                                                                                                                                          |
| 41 | FLT_41_HARTSHN4_MANNING4_138kV_3P          | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                                                                                                                                                                                                          |
|    | Н                                          | c. Wait 20 cycles, and then re-close the line in (b) back into the                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                            | fault.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                            | d. Leave fault on for 5 cycles, then trip the line in (b) and                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                            | remove fault.                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                            | 3PH Fault on the Lone Oak (510897) to South McAlester Tap                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                            | (510906) 138KV line, near Lone Oak.                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                            | 8kV_3PH       (510906) 138kV line, near Lone Oak.         a. Apply fault at the Lone Oak 138kV bus.         b. Clear fault after 5 cycles by tripping the faulted line.         c. Wait 20 cycles, and then re-close the line in (b) back into fault.         d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.         3PH Fault on the Lone Oak (510897) to McAlester (510908 138kV line, near Lone Oak. |
| 42 | FLT_42_LONEOAK4_SMCALTP4_138kV_3PH         | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                            | c. wait 20 cycles, and then re-close the line in (b) back into the                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                            | Iduit.<br>d. Leave fault on for E-cycles, then trip the line in (b) and                                                                                                                                                                                                                                                                                                                                                              |
|    |                                            | a Leave fault on for 5 cycles, then trip the fine in (b) and                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                            | 3PH Foult on the Long Oak (510897) to McAlester (510908)                                                                                                                                                                                                                                                                                                                                                                             |
|    | FLT_43_LONEOAK4_MCALEST4_138kV_3PH         | 138kV line near Lone Oak                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |                                            | a Apply fault at the Lone Oak 138kV hus                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                            | h Clear fault after 5 cycles by tripping the faulted line                                                                                                                                                                                                                                                                                                                                                                            |
| 43 |                                            | c. Wait 20 cycles, and then re-close the line in (b) back into the                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                            | fault.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                            | d. Leave fault on for 5 cycles, then trip the line in (b) and                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                            | remove fault.                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                            | 3PH Fault on the Lone Oak (510897) to Enogex Wilburton Tap                                                                                                                                                                                                                                                                                                                                                                           |
|    |                                            | (510944) 138kV line, near Lone Oak.                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                            | a. Apply fault at the Lone Oak 138kV bus.                                                                                                                                                                                                                                                                                                                                                                                            |
| лл | ΕΙ Τ. ΛΛ. Ι ΟΝΕΟΛΚΑ. ΕΝΟΨΙΙ ΤΛ. 138৮Ν. 3ΡΗ | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                            | c. Wait 20 cycles, and then re-close the line in (b) back into the                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                            | fault.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                            | d. Leave fault on for 5 cycles, then trip the line in (b) and                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                            | remove fault.                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                            | 3PH Fault on the Lone Oak (510897) to Carbon (520844)                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                            | 138KV line, near Lone Oak.                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                                            | a. Apply fault at the Lone Oak 138KV bus.                                                                                                                                                                                                                                                                                                                                                                                            |
| 45 | FLT_45_LONEOAK4_CARBON4_138kV_3PH          | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                            | c. Wait 20 cycles, and then re-close the line in (b) back into the                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                            | d Leave fault on for 5 cycles then trin the line in (b) and                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                            | remove fault                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                            | 3PH Fault on the Lone Oak (510897) 138kV to (510896) 69kV                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                            | to (510940) 13 8kV transformer circuit 1 near Lone Oak                                                                                                                                                                                                                                                                                                                                                                               |
| 46 | FLT_46_LONEOAK4_LONEOAK2_138_69kV_         | 138kV.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | 1РН                                        | a. Apply fault at the Lone Oak 138kV bus.                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                            | b. Clear fault after 5 cycles by tripping the faulted transformer.                                                                                                                                                                                                                                                                                                                                                                   |

| Contingency Number and Name |                                      | Description                                                         |  |  |  |
|-----------------------------|--------------------------------------|---------------------------------------------------------------------|--|--|--|
|                             |                                      | 3PH Fault on the Weleetka (505592) to Pharoah SW (510026)           |  |  |  |
|                             |                                      | 138kV line, near Weleetka.                                          |  |  |  |
|                             |                                      | a. Apply fault at the Weleetka 138kV bus.                           |  |  |  |
| 17                          |                                      | b. Clear fault after 5 cycles by tripping the faulted line.         |  |  |  |
| 47                          | FEI_47_WEEETR4_FIIAROAII4_150KV_5FII | c. Wait 20 cycles, and then re-close the line in (b) back into the  |  |  |  |
|                             |                                      | fault.                                                              |  |  |  |
|                             |                                      | d. Leave fault on for 5 cycles, then trip the line in (b) and       |  |  |  |
|                             |                                      | remove fault.                                                       |  |  |  |
|                             |                                      | SLG Fault with stuck breaker on the Greasy Creek (505595)           |  |  |  |
|                             | FLT_48_GREASYC4_EXPLOR4SB_138kV_1PH  | to Explorer (505596) 138kV line, near Greasy Creek.                 |  |  |  |
| 48                          |                                      | a. Apply single line to ground at the Greasy Creek 138kV bus.       |  |  |  |
|                             |                                      | b. Clear fault after 16 cycles by tripping the faulted line and th  |  |  |  |
|                             |                                      | Greasy Creek (505595) bus as well as Explorer bus (505596).         |  |  |  |
|                             |                                      | <b>SLG Fault with stuck breaker</b> on the South Brown (505602)     |  |  |  |
|                             |                                      | to Denison (505604) 138kV line, near South Brown.                   |  |  |  |
| 19                          | FLT_49_SBROWN4_DENISON4SB_138kV_1P   | a. Apply single line to ground fault at the South Brown 138kV       |  |  |  |
| 49                          | Н                                    | bus.                                                                |  |  |  |
|                             |                                      | b. Clear fault after 16 cycles by tripping the faulted line and the |  |  |  |
|                             |                                      | South Brown bus (505602).                                           |  |  |  |

## RESULTS

Initial stability simulations showed angle instabilities for ASGI-2016-011, ASGI-2016-012, and ASGI-2016-013 for contingencies at the Tupelo substation and nearby. It was determined that the generator documentation for these projects provided saturated reactances, rather than unsaturated reactances, which are required for the PSSE generator model. After correcting the reactances in the PSSE generator model, the simulation was repeated. The project generators as well as all the monitored synchronous generators exhibited no angular instabilities for the contingencies simulated.

Results of the stability analysis are summarized in **Table 7**. These results are valid for ASGI-2016-011, ASGI-2016-012, and ASGI-2016-013, with generation amounts up to 7.4, 61.7, and 4.9 MW, respectively.

|    | Contingency Number and Name        | 2016WP | 2017SP | 2025SP |
|----|------------------------------------|--------|--------|--------|
| 1  | FLT_01_TUPELO4_ALLEN4_138kV_3PH    | Stable | Stable | Stable |
| 2  | FLT_02_TUPELO4_SBROWN4_138kV_3PH   | Stable | Stable | Stable |
| 3  | FLT_03_TUPELO4_ATKWEST4_138kV_3PH  | Stable | Stable | Stable |
| 4  | FLT_04_TUPELO4_ALLENGT4_138kV_3PH  | Stable | Stable | Stable |
| 5  | FLT_05_TUPELO4_TUPLOTP4_138kV_3PH  | Stable | Stable | Stable |
| 6  | FLT_06_TUPELO4_TUPELO4_138kV_3PH   | Stable | Stable | Stable |
| 7  | FLT_07_SBROWN4_KRSYJCTS4_138kV_3PH | Stable | Stable | Stable |
| 8  | FLT_08_SBROWN4_DENISON4_138kV_3PH  | Stable | Stable | Stable |
| 9  | FLT_09_SBROWN4_KRSYJCTN4_138kV_3PH | Stable | Stable | Stable |
| 10 | FLT_10_SBROWN4_BROWN4_138kV_3PH    | Stable | Stable | Stable |
| 11 | FLT_11_SBROWN4_RUSSETT4_138kV_3PH  | Stable | Stable | Stable |
| 12 | FLT_12_SBROWN4_COLBRTP4_138kV_3PH  | Stable | Stable | Stable |
| 13 | FLT_13_COLBRTP4_BUTRFLD4_138kV_3PH | Stable | Stable | Stable |

### Table 7: Fault Analysis Results

|    | Contingency Number and Name             | 2016WP | 2017SP | 2025SP |
|----|-----------------------------------------|--------|--------|--------|
| 14 | FLT_14_COLBRTP4_BODLE4_138kV_3PH        | Stable | Stable | Stable |
| 15 | FLT_15_COLBERT4_COLBRT4_138kV_3PH       | Stable | Stable | Stable |
| 16 | FLT_16_COLBERT4_KIERSEY4_138kV_3PH      | Stable | Stable | Stable |
| 17 | FLT_17_COLBERT4_SEAWAY4_138kV_3PH       | Stable | Stable | Stable |
| 18 | FLT_18_DURANT4_BENNGTN4_138kV_3PH       | Stable | Stable | Stable |
| 19 | FLT_19_DURANT4_SCOLEMN4_138kV_3PH       | Stable | Stable | Stable |
| 20 | FLT_20_RUSSET4_RUSSETT4_138kV_3PH       | Stable | Stable | Stable |
| 21 | FLT_21_RUSSET4_JOHNCO4_138kV_3PH        | Stable | Stable | Stable |
| 22 | FLT_22_RUSSET4_GLASSES4_138kV_3PH       | Stable | Stable | Stable |
| 23 | FLT_23_RUSSET4_SPRNDAL4_138kV_3PH       | Stable | Stable | Stable |
| 24 | FLT_24_ALLEN4_EXPLOR4_138kV_3PH         | Stable | Stable | Stable |
| 25 | FLT_25_EXPLOR4_GREASYC4_138kV_3PH       | Stable | Stable | Stable |
| 26 | FLT_26_GREASYC4_WELEETKA4_138kV_3PH     | Stable | Stable | Stable |
| 27 | FLT_27_WELEETKA4_CHECOTA4_138kV_3PH     | Stable | Stable | Stable |
| 28 | FLT_28_WELEETKA4_WELETK4_138kV_3PH      | Stable | Stable | Stable |
| 29 | FLT_29_WELEETKA4_WELEETK5_138_161kV_1PH | Stable | Stable | Stable |
| 30 | FLT_30_WELETK4_FIXCT4_138kV_3PH         | Stable | Stable | Stable |
| 31 | FLT_31_WELETK4_DUSTIN4_138kV_3PH        | Stable | Stable | Stable |
| 32 | FLT_32_WELETK4_HENRYET4_138kV_3PH       | Stable | Stable | Stable |
| 33 | FLT_33_WELETK4_ECHEN4_138kV_3PH         | Stable | Stable | Stable |
| 34 | FLT_34_WELETK4_WELEETK2_138_69kV_1PH    | Stable | Stable | Stable |
| 35 | FLT_35_ASHLAND4_COLGATE4_138kV_3PH      | Stable | Stable | Stable |
| 36 | FLT_36_ASHLAND4_PITTSBG4_138kV_3PH      | Stable | Stable | Stable |
| 37 | FLT_37_COLGATE4_TUPELO4_138kV_3PH       | Stable | Stable | Stable |
| 38 | FLT_38_SAVANNA4_PITTSBG4_138kV_3PH      | Stable | Stable | Stable |
| 39 | FLT_39_SAVANNA4_HARTSHN4_138kV_3PH      | Stable | Stable | Stable |
| 40 | FLT_40_HARTSHN4_LONEOAK4_138kV_3PH      | Stable | Stable | Stable |
| 41 | FLT_41_HARTSHN4_MANNING4_138kV_3PH      | Stable | Stable | Stable |
| 42 | FLT_42_LONEOAK4_SMCALTP4_138kV_3PH      | Stable | Stable | Stable |
| 43 | FLT_43_LONEOAK4_MCALEST4_138kV_3PH      | Stable | Stable | Stable |
| 44 | FLT_44_LONEOAK4_ENOWILT4_138kV_3PH      | Stable | Stable | Stable |
| 45 | FLT_45_LONEOAK4_CARBON4_138kV_3PH       | Stable | Stable | Stable |
| 46 | FLT_46_LONEOAK4_LONEOAK2_138_69kV_1PH   | Stable | Stable | Stable |
| 47 | FLT_47_WELETK4_PHAROAH4_138kV_3PH       | Stable | Stable | Stable |
| 48 | FLT_48_GREASYC4_EXPLOR4SB_138kV_1PH     | Stable | Stable | Stable |
| 49 | FLT_49_SBROWN4_DENISON4SB_138kV_1PH     | Stable | Stable | Stable |

### Table 7: Fault Analysis Results

## SHORT CIRCUIT ANALYSIS

A short circuit analysis was performed on the 2017 Summer Peak and 2025 Summer Peak power flow case using the PSS/E ASCC program. Since the power flow model does not contain negative and zero sequence data, only three-phase symmetrical fault current levels were calculated at the point of interconnection up to and including five levels away. The results of the short circuit analysis are shown below.

#### ASGI-2016-011 17SP

PSS<sup>®</sup>E-32.2.0 ASCC SHORT CIRCUIT CURRENTS

THU, JUN 15 2017

10:32 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 175 WITH MMWG 155, MRO 16W TOPO/165 PROF, SERC 165

OPTIONS USED:

- FLAT CONDITIONS
  - BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE

- GENERATOR P=0, Q=0

- TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED

- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

|        |             |           |     | THREE PHAS | SE FAULT |
|--------|-------------|-----------|-----|------------|----------|
| Х      | BUS         | X         |     | /I+/       | AN(I+)   |
| 505598 | [ALLEN 4    | 138.00]   | AMP | 5477.7     | -76.43   |
| 505596 | [EXPLOR 4   | 138.00]   | AMP | 5414.0     | -76.12   |
| 505600 | [TUPELO 4   | 138.00]   | AMP | 10654.9    | -79.04   |
| 510916 | [ALLEN4     | 138.00]   | AMP | 5470.3     | -76.43   |
| 588270 | [ASGI1611   | 138.00]   | AMP | 4158.6     | -77.16   |
| 505595 | [GREASYC4   | 138.00]   | AMP | 6880.1     | -76.47   |
| 505602 | [S BROWN4   | 138.00]   | AMP | 8061.5     | -77.45   |
| 510881 | [ALLENGT4   | 138.00]   | AMP | 10312.2    | -78.88   |
| 510884 | [HOLDEXP4   | 138.00]   | AMP | 5287.4     | -76.01   |
| 520406 | [TUPELO4    | 138.00]   | AMP | 9719.7     | -79.20   |
| 521071 | [TUPLOTP4   | 138.00]   | AMP | 10367.6    | -78.88   |
| 521188 | [ATKWEST4   | 138.00]   | AMP | 5189.0     | -80.78   |
| 585330 | [ASGI-2015- | 00138.00] | AMP | 4686.3     | -80.23   |
| 588280 | [ASGI1612   | 138.00]   | AMP | 5869.8     | -79.98   |
| 505592 | [WELEETK4   | 138.00]   | AMP | 14161.1    | -78.74   |
| 505604 | [DENISON4   | 138.00]   | AMP | 3068.7     | -75.83   |
| 510880 | [COALGTP4   | 138.00]   | AMP | 6081.8     | -77.55   |
| 510887 | [ATOKA4     | 138.00]   | AMP | 5796.6     | -79.47   |
| 510935 | [EXPCOLT4   | 138.00]   | AMP | 7515.2     | -77.69   |
| 515157 | [BROWN 4    | 138.00]   | AMP | 8021.4     | -77.39   |
| 515159 | [COLBRTP4   | 138.00]   | AMP | 6141.1     | -76.06   |
| 515192 | [LULA 4     | 138.00]   | AMP | 9192.9     | -79.26   |
| 520862 | [COLGATE4   | 138.00]   | AMP | 5998.2     | -79.87   |
| 521044 | [RUSSETT4   | 138.00]   | AMP | 10861.7    | -77.84   |
| 521075 | [STONEWAL   | LH138.00] | AMP | 8615.8     | -77.90   |
| 521108 | [KRSYJCTN4  | 138.00]   | AMP | 7709.4     | -77.95   |
| 521109 | [KRSYJCTS4  | 138.00]   | AMP | 7494.8     | -77.63   |
| 505590 | [WELEETK5   | 161.00]   | AMP | 6173.2     | -82.13   |
| 505594 | [CHECOTA4   | 138.00]   | AMP | 6256.4     | -77.07   |
| 510862 | [COALGAT4   | 138.00]   | AMP | 5860.2     | -77.44   |

Southwest Power Pool, Inc.

| 510863 | [ALLENNG4      | 138.00]    | AMP | 5568.7  | -76.85 |
|--------|----------------|------------|-----|---------|--------|
| 510882 | TATOKA2        | 69.000     | AMP | 3997.4  | -77.93 |
| 510895 | LEHIGH-4       | 138.00     | AMP | 5689.6  | -77.93 |
| 510902 | -<br>WELETK4   | 138.00     | AMP | 13900.1 | -78.63 |
| 510936 | EXPCOLG4       | 138.00     | AMP | 7412.9  | -77.64 |
| 510949 | WAPANUCKA      | 4138.00    | AMP | 5806.1  | -79.67 |
| 515120 | RUSSET-4       | 138.00     | AMP | 10928.6 | -77.86 |
| 515153 | COLEMNT4       | 138.00     | AMP | 7998.5  | -77.39 |
| 515155 | BODLE 4        | 138.00     | AMP | 6036.1  | -75.61 |
| 515176 | BUTRFLD4       | 138.00     | AMP | 5567.2  | -75.87 |
| 515191 | LULA 2         | 69.000     | AMP | 5939.7  | -81.20 |
| 515500 | FRISCC04       | 138.00     | AMP | 7968.9  | -79.97 |
| 520818 | ASHLAND4       | 138.00     | AMP | 4664.9  | -80.22 |
| 520963 | -<br>[KIERSEY4 | 138.00]    | AMP | 5404.2  | -75.29 |
| 520969 | LASALLE4       | 138.00     | AMP | 6472.8  | -76.69 |
| 521026 | PHAROAH4       | 138.00     | AMP | 13918.0 | -78.81 |
| 521049 | SCOLEMN4       | 138.00     | AMP | 6975.9  | -78.99 |
| 521187 | ATKEAST4       | 138.00]    | AMP | 5098.5  | -80.94 |
| 587200 |                | 030138.00] | AMP | 5846.9  | -78.11 |
| 300686 | 4WOODY         | 138.00     | AMP | 7307.0  | -79.20 |
| 300895 | 2CHECOTA       | 69.000]    | AMP | 5392.2  | -77.57 |
| 505552 | GORE 5         | 161.00]    | AMP | 11262.9 | -79.93 |
| 505574 | EUFAULA4       | 138.00]    | AMP | 8682.8  | -80.40 |
| 510877 | [FIXCT4        | 138.00]    | AMP | 7030.6  | -71.70 |
| 510879 | ΑΤΟΚΑ Ρ2       | 69.000]    | AMP | 3426.3  | -74.37 |
| 510891 | [LANE 2        | 69.000]    | AMP | 2765.2  | -68.59 |
| 510892 | [HENRYET4      | 138.00]    | AMP | 8315.1  | -81.39 |
| 510903 | [WELEETK2      | 69.000]    | AMP | 10180.2 | -83.25 |
| 510921 | [DUSTIN-4      | 138.00]    | AMP | 8497.1  | -81.31 |
| 510923 | [EC.HEN-4      | 138.00]    | AMP | 8386.5  | -77.18 |
| 514808 | [JOHNCO 4      | 138.00]    | AMP | 14513.4 | -82.93 |
| 515147 | [GLASSES4      | 138.00]    | AMP | 7917.3  | -75.47 |
| 515152 | [BROWNTP4      | 138.00]    | AMP | 7951.5  | -77.33 |
| 515154 | [EXPLRPL4      | 138.00]    | AMP | 4403.6  | -76.30 |
| 515172 | [SPRNDAL4      | 138.00]    | AMP | 11030.4 | -78.06 |
| 515190 | [AOCPT 2       | 69.000]    | AMP | 5640.5  | -74.87 |
| 515193 | [COLBRT-4      | 138.00]    | AMP | 4728.7  | -75.16 |
| 515362 | [HARDEN 4      | 138.00]    | AMP | 8101.9  | -80.15 |
| 515511 | [SOCPMPT2      | 69.000]    | AMP | 5600.3  | -80.79 |
| 520860 | [COLBERT4      | 138.00]    | AMP | 4722.8  | -75.08 |
| 520884 | [DURANT 4      | 138.00]    | AMP | 5385.8  | -81.43 |
| 520886 | [DUSTIN 4      | 138.00]    | AMP | 7075.6  | -79.65 |
| 520968 | [LANE 4        | 138.00]    | AMP | 4828.6  | -81.59 |
| 520971 | [LATTAJT4      | 138.00]    | AMP | 5517.0  | -76.13 |
| 521030 | [PITTSBG4      | 138.00]    | AMP | 4406.6  | -80.33 |
| 521084 | [WETUMKA4      | 138.00]    | AMP | 8383.8  | -80.72 |
| 588290 | [ASGI1613      | 138.00]    | AMP | 4664.9  | -80.22 |

PSS®E-32.2.0 ASCC SHORT CIRCUIT CURRENTS THU, 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 2025S WITH MMWG 2024S, MRO & SERC 2025 SUMMER

OPTIONS USED:

- FLAT CONDITIONS
  - BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
  - GENERATOR P=0, Q=0
  - TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
  - LINE CHARGING=0.0 IN +/-/0 SEQUENCE
  - LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
  - LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
  - DC LINES AND FACTS DEVICES BLOCKED
  - TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

|        |             |           |     | THREE PHAS | E FAULT |
|--------|-------------|-----------|-----|------------|---------|
| Х      | BUS         | · X       |     | /I+/       | AN(I+)  |
| 505598 | [ALLEN 4    | 138.00]   | AMP | 5543.0     | -76.48  |
| 505596 | [EXPLOR 4   | 138.00]   | AMP | 5538.7     | -76.24  |
| 505600 | [TUPELO 4   | 138.00]   | AMP | 10721.6    | -79.04  |
| 510916 | [ALLEN4     | 138.00]   | AMP | 5535.4     | -76.48  |
| 588270 | [ASGI1611   | 138.00]   | AMP | 4195.6     | -77.20  |
| 505595 | [GREASYC4   | 138.00]   | AMP | 7183.0     | -76.76  |
| 505602 | [S BROWN4   | 138.00]   | AMP | 8074.3     | -77.43  |
| 510881 | [ALLENGT4   | 138.00]   | AMP | 10374.4    | -78.88  |
| 510884 | [HOLDEXP4   | 138.00]   | AMP | 5406.3     | -76.13  |
| 520406 | [TUPELO4    | 138.00]   | AMP | 9776.4     | -79.20  |
| 521071 | [TUPLOTP4   | 138.00]   | AMP | 10427.0    | -78.87  |
| 521188 | [ATKWEST4   | 138.00]   | AMP | 5200.9     | -80.78  |
| 585330 | [ASGI-2015- | 00138.00] | AMP | 4699.2     | -80.23  |
| 588280 | [ASGI1612   | 138.00]   | AMP | 5887.2     | -79.97  |
| 505592 | [WELEETK4   | 138.00]   | AMP | 16081.9    | -80.03  |
| 505604 | [DENISON4   | 138.00]   | AMP | 3070.6     | -75.83  |
| 510880 | [COALGTP4   | 138.00]   | AMP | 6100.4     | -77.54  |
| 510887 | [ATOKA4     | 138.00]   | AMP | 5810.7     | -79.47  |
| 510935 | [EXPCOLT4   | 138.00]   | AMP | 7548.2     | -77.68  |
| 515157 | [BROWN 4    | 138.00]   | AMP | 8034.1     | -77.38  |
| 515159 | [COLBRTP4   | 138.00]   | AMP | 6148.5     | -76.04  |
| 515192 | [LULA 4     | 138.00]   | AMP | 9233.0     | -79.26  |
| 520862 | [COLGATE4   | 138.00]   | AMP | 6023.9     | -79.89  |
| 521044 | [RUSSETT4   | 138.00]   | AMP | 10881.1    | -77.82  |
| 521075 | [STONEWAL   | LH138.00] | AMP | 8656.0     | -77.89  |
| 521108 | [KRSYJCTN4  | 138.00]   | AMP | 7720.9     | -77.94  |
| 521109 | [KRSYJCTS4  | 138.00]   | AMP | 7505.9     | -77.62  |
| 505590 | [WELEETK5   | 161.00]   | AMP | 6448.0     | -82.87  |
| 505594 | [CHECOTA4   | 138.00]   | AMP | 6180.2     | -77.04  |
| 510862 | [COALGAT4   | 138.00]   | AMP | 5877.4     | -77.43  |
| 510863 | [ALLENNG4   | 138.00]   | AMP | 5586.7     | -76.84  |
| 510882 | [ATOKA2     | 69.000]   | AMP | 4001.0     | -77.93  |
| 510895 | [LEHIGH-4   | 138.00]   | AMP | 5704.8     | -77.92  |
| 510902 | [WELETK4    | 138.00]   | AMP | 16758.3    | -80.45  |
| 510936 | [EXPCOLG4   | 138.00]   | AMP | 7445.0     | -77.63  |
| 510949 | [WAPANUCKA  | 4138.00]  | AMP | 5824.3     | -79.67  |
| 515120 | [RUSSET-4   | 138.00]   | AMP | 10948.2    | -77.85  |
| 515153 | [COLEMNT4   | 138.00]   | AMP | 8011.1     | -77.37  |
| 515155 | [BODLE 4    | 138.00]   | AMP | 6043.3     | -75.60  |
| 515176 | [BUTRFLD4   | 138.00]   | AMP | 5573.2     | -75.86  |
| 515191 | [LULA 2     | 69.000]   | AMP | 5945.9     | -81.20  |
| 515500 | [FRISCC04   | 138.00]   | AMP | 7990.5     | -79.96  |
| 520818 | [ASHLAND4   | 138.00]   | AMP | 4684.1     | -80.25  |
| 520963 | [KIERSEY4   | 138.00]   | AMP | 5409.9     | -75.28  |
| 520969 | [LASALLE4   | 138.00]   | AMP | 6494.9     | -76.67  |

THU, JUN 15 2017 10:32

Southwest Power Pool, Inc.

| 521026 | [PHAROAH4     | 138.00]  | AMP | 15721.9 | -80.05 |
|--------|---------------|----------|-----|---------|--------|
| 521049 | SCOLEMN4      | 138.00]  | AMP | 6984.9  | -78.98 |
| 521187 | ATKEAST4      | 138.00]  | AMP | 5107.8  | -80.94 |
| 587200 | [GEN-2016-030 | 0138.00] | AMP | 5853.6  | -78.10 |
| 300686 | 4WOODY        | 138.00]  | AMP | 7568.6  | -79.58 |
| 300895 | 2CHECOTA      | 69.000]  | AMP | 5367.3  | -77.55 |
| 505552 | GORE 5        | 161.00]  | AMP | 11096.1 | -79.97 |
| 505574 | EUFAULA4      | 138.00]  | AMP | 8288.5  | -80.07 |
| 510877 | [FIXCT4       | 138.00]  | AMP | 7132.7  | -71.59 |
| 510879 | [ΑΤΟΚΑ Ρ2     | 69.000]  | AMP | 3429.2  | -74.37 |
| 510891 | [LANE 2       | 69.000]  | AMP | 2766.5  | -68.58 |
| 510892 | [HENRYET4     | 138.00]  | AMP | 8885.2  | -82.11 |
| 510903 | [WELEETK2     | 69.000]  | AMP | 10768.1 | -84.19 |
| 510921 | [DUSTIN-4     | 138.00]  | AMP | 9221.8  | -82.30 |
| 510923 | [EC.HEN-4     | 138.00]  | AMP | 8997.7  | -77.62 |
| 514808 | [JOHNCO 4     | 138.00]  | AMP | 14543.9 | -82.92 |
| 515147 | [GLASSES4     | 138.00]  | AMP | 7929.2  | -75.46 |
| 515152 | [BROWNTP4     | 138.00]  | AMP | 7963.9  | -77.31 |
| 515154 | [EXPLRPL4     | 138.00]  | AMP | 4407.4  | -76.29 |
| 515172 | [SPRNDAL4     | 138.00]  | AMP | 11047.1 | -78.04 |
| 515190 | [AOCPT 2      | 69.000]  | AMP | 5644.5  | -74.86 |
| 515193 | [COLBRT-4     | 138.00]  | AMP | 4733.0  | -75.15 |
| 515362 | [HARDEN 4     | 138.00]  | AMP | 8121.3  | -80.14 |
| 515511 | [SOCPMPT2     | 69.000]  | AMP | 5605.8  | -80.79 |
| 520860 | [COLBERT4     | 138.00]  | AMP | 4727.1  | -75.07 |
| 520884 | [DURANT 4     | 138.00]  | AMP | 5390.1  | -81.42 |
| 520886 | [DUSTIN 4     | 138.00]  | AMP | 7439.4  | -80.19 |
| 520968 | [LANE 4       | 138.00]  | AMP | 4836.0  | -81.59 |
| 520971 | [LATTAJT4     | 138.00]  | AMP | 5533.2  | -76.11 |
| 521030 | [PITTSBG4     | 138.00]  | AMP | 4428.0  | -80.37 |
| 521084 | [WETUMKA4     | 138.00]  | AMP | 8911.7  | -81.44 |
| 588290 | [ASGI1613     | 138.00]  | AMP | 4684.1  | -80.25 |

#### ASGI-2016-012 17SP

PSS®E-32.2.0 ASCC SHORT CIRCUIT CURRENTS

WED, JUN 14 2017

15:55 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 17S WITH MMWG 15S, MRO 16W TOPO/16S PROF, SERC 16S

#### OPTIONS USED:

#### - FLAT CONDITIONS

- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

|        |             |           |     | THREE PHAS | E FAULT |
|--------|-------------|-----------|-----|------------|---------|
| Х      | BUS         | · X       |     | /I+/       | AN(I+)  |
| 505600 | [TUPELO 4   | 138.00]   | AMP | 10654.9    | -79.04  |
| 505598 | [ALLEN 4    | 138.00]   | AMP | 5477.7     | -76.43  |
| 505602 | [S BROWN4   | 138.00]   | AMP | 8061.5     | -77.45  |
| 510881 | [ALLENGT4   | 138.00]   | AMP | 10312.2    | -78.88  |
| 520406 | [TUPELO4    | 138.00]   | AMP | 9719.7     | -79.20  |
| 521071 | [TUPLOTP4   | 138.00]   | AMP | 10367.6    | -78.88  |
| 521188 | [ATKWEST4   | 138.00]   | AMP | 5189.0     | -80.78  |
| 585330 | [ASGI-2015- | 00138.00] | AMP | 4686.3     | -80.23  |
| 588280 | [ASGI1612   | 138.00]   | AMP | 5869.8     | -79.98  |
| 505596 | [EXPLOR 4   | 138.00]   | AMP | 5414.0     | -76.12  |
| 505604 | [DENISON4   | 138.00]   | AMP | 3068.7     | -75.83  |
| 510880 | [COALGTP4   | 138.00]   | AMP | 6081.8     | -77.55  |
| 510887 | [ATOKA4     | 138.00]   | AMP | 5796.6     | -79.47  |
| 510916 | [ALLEN4     | 138.00]   | AMP | 5470.3     | -76.43  |
| 510935 | [EXPCOLT4   | 138.00]   | AMP | 7515.2     | -77.69  |
| 515157 | [BROWN 4    | 138.00]   | AMP | 8021.4     | -77.39  |
| 515159 | [COLBRTP4   | 138.00]   | AMP | 6141.1     | -76.06  |
| 515192 | [LULA 4     | 138.00]   | AMP | 9192.9     | -79.26  |
| 520862 | [COLGATE4   | 138.00]   | AMP | 5998.2     | -79.87  |
| 521044 | [RUSSETT4   | 138.00]   | AMP | 10861.7    | -77.84  |
| 521075 | [STONEWAL   | LH138.00] | AMP | 8615.8     | -77.90  |
| 521108 | [KRSYJCTN4  | 138.00]   | AMP | 7709.4     | -77.95  |
| 521109 | [KRSYJCTS4  | 138.00]   | AMP | 7494.8     | -77.63  |
| 588270 | [ASGI1611   | 138.00]   | AMP | 4158.6     | -77.16  |
| 505595 | [GREASYC4   | 138.00]   | AMP | 6880.1     | -76.47  |
| 510862 | [COALGAT4   | 138.00]   | AMP | 5860.2     | -77.44  |
| 510863 | [ALLENNG4   | 138.00]   | AMP | 5568.7     | -76.85  |
| 510882 | [ATOKA2     | 69.000]   | AMP | 3997.4     | -77.93  |
| 510884 | [HOLDEXP4   | 138.00]   | AMP | 5287.4     | -76.01  |
| 510895 | [LEHIGH-4   | 138.00]   | AMP | 5689.6     | -77.93  |
| 510936 | [EXPCOLG4   | 138.00]   | AMP | 7412.9     | -77.64  |
| 510949 | [WAPANUCKA  | 4138.00]  | AMP | 5806.1     | -79.67  |
| 515120 | [RUSSET-4   | 138.00]   | AMP | 10928.6    | -77.86  |
| 515153 | [COLEMNT4   | 138.00]   | AMP | 7998.5     | -77.39  |
| 515155 | [BODLE 4    | 138.00]   | AMP | 6036.1     | -75.61  |
| 515176 | [BUTRFLD4   | 138.00]   | AMP | 5567.2     | -75.87  |
| 515191 | [LULA 2     | 69.000]   | AMP | 5939.7     | -81.20  |
| 515500 | [FRISCC04   | 138.00]   | AMP | 7968.9     | -79.97  |
| 520818 | [ASHLAND4   | 138.00]   | AMP | 4664.9     | -80.22  |
| 520963 | [KIERSEY4   | 138.00]   | AMP | 5404.2     | -75.29  |
| 520969 | [LASALLE4   | 138.00]   | AMP | 6472.8     | -76.69  |
| 521049 | [SCOLEMN4   | 138.00]   | AMP | 6975.9     | -78.99  |
| 521187 | [ATKEAST4   | 138.00]   | AMP | 5098.5     | -80.94  |

Southwest Power Pool, Inc.

| 587200 | [GEN-2016-036  | 0138.00] | AMP | 5846.9  | -78.11 |
|--------|----------------|----------|-----|---------|--------|
| 505592 | [WELEETK4      | 138.00]  | AMP | 14161.1 | -78.74 |
| 510879 | [ΑΤΟΚΑ Ρ2      | 69.000]  | AMP | 3426.3  | -74.37 |
| 510891 | [LANE 2        | 69.000]  | AMP | 2765.2  | -68.59 |
| 514808 | [JOHNCO 4      | 138.00]  | AMP | 14513.4 | -82.93 |
| 515147 | [GLASSES4      | 138.00]  | AMP | 7917.3  | -75.47 |
| 515152 | [BROWNTP4      | 138.00]  | AMP | 7951.5  | -77.33 |
| 515154 | [EXPLRPL4      | 138.00]  | AMP | 4403.6  | -76.30 |
| 515172 | [SPRNDAL4      | 138.00]  | AMP | 11030.4 | -78.06 |
| 515190 | AOCPT 2        | 69.000]  | AMP | 5640.5  | -74.87 |
| 515193 | COLBRT-4       | 138.00]  | AMP | 4728.7  | -75.16 |
| 515362 | HARDEN 4       | 138.00   | AMP | 8101.9  | -80.15 |
| 515511 | SOCPMPT2       | 69.000   | AMP | 5600.3  | -80.79 |
| 520860 | COLBERT4       | 138.00]  | AMP | 4722.8  | -75.08 |
| 520884 | DURANT 4       | 138.00]  | AMP | 5385.8  | -81.43 |
| 520968 | LANE 4         | 138.00]  | AMP | 4828.6  | -81.59 |
| 520971 | LATTAJT4       | 138.00   | AMP | 5517.0  | -76.13 |
| 521030 | _<br>[PITTSBG4 | 138.00]  | AMP | 4406.6  | -80.33 |
| 588290 | ASGI1613       | 138.00   | AMP | 4664.9  | -80.22 |
| 505590 | WELEETK5       | 161.00]  | AMP | 6173.2  | -82.13 |
| 505594 | CHECOTA4       | 138.00   | AMP | 6256.4  | -77.07 |
| 510874 | _<br>[MCGEETP2 | 69.000]  | AMP | 2241.0  | -64.61 |
| 510885 | _<br>[PITTSB-2 | 69.000]  | AMP | 2300.6  | -63.22 |
| 510902 | WELETK4        | 138.00]  | AMP | 13900.1 | -78.63 |
| 514809 | JOHNCO 7       | 345.00]  | AMP | 9294.9  | -84.51 |
| 515122 | SXMLCKT4       | 138.00]  | AMP | 10674.3 | -79.91 |
| 515149 | MADINDT4       | 138.00]  | AMP | 7908.0  | -75.52 |
| 515150 | CANEYCK4       | 138.00]  | AMP | 8350.6  | -77.54 |
| 515151 | LTLCITY4       | 138.00]  | AMP | 6972.7  | -77.22 |
| 515162 | FNDTION4       | 138.00]  | AMP | 11195.5 | -78.34 |
| 515164 | ROCKYPT4       | 138.00]  | AMP | 10023.1 | -80.55 |
| 515183 | SOCPUMP2       | 69.000]  | AMP | 5558.4  | -80.74 |
| 515189 | AOCPA 2        | 69.000]  | AMP | 6732.1  | -77.63 |
| 515197 | -<br>[HOMERTP2 | 69.000]  | AMP | 5494.4  | -74.30 |
| 515318 | SOTHADA4       | 138.00]  | AMP | 11066.3 | -80.81 |
| 520426 | -<br>SEAWAY4   | 138.00]  | AMP | 3967.0  | -75.01 |
| 520826 | BENNGTN4       | 138.00   | AMP | 4719.7  | -83.15 |
| 520874 | DARWIN 4       | 138.00]  | AMP | 4691.3  | -83.64 |
| 520970 | LATTA 4        | 138.00]  | AMP | 4564.4  | -74.97 |
| 521014 | OILCNTR4       | 138.00]  | AMP | 4994.8  | -75.77 |
| 521026 | PHAROAH4       | 138.00]  | AMP | 13918.0 | -78.81 |
| 521047 | [SAVANNA4      | 138.00]  | AMP | 5062.2  | -80.43 |

#### ASGI-2016-012 25SP

PSS®E-32.2.0 ASCC SHORT CIRCUIT CURRENTS

WED, JUN 14 2017

16:08 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 2025S WITH MMWG 2024S, MRO & SERC 2025 SUMMER

#### OPTIONS USED:

#### - FLAT CONDITIONS

- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

|        |            |            |     | THREE PHAS | E FAULT |
|--------|------------|------------|-----|------------|---------|
| Х      | BUS        | X          |     | /I+/       | AN(I+)  |
| 505600 | [TUPELO 4  | 138.00]    | AMP | 10721.6    | -79.04  |
| 505598 | [ALLEN 4   | 138.00]    | AMP | 5543.0     | -76.48  |
| 505602 | [S BROWN4  | 138.00]    | AMP | 8074.3     | -77.43  |
| 510881 | [ALLENGT4  | 138.00]    | AMP | 10374.4    | -78.88  |
| 520406 | [TUPELO4   | 138.00]    | AMP | 9776.4     | -79.20  |
| 521071 | [TUPLOTP4  | 138.00]    | AMP | 10427.0    | -78.87  |
| 521188 | [ATKWEST4  | 138.00]    | AMP | 5200.9     | -80.78  |
| 585330 | [ASGI-2015 | -00138.00] | AMP | 4699.2     | -80.23  |
| 588280 | [ASGI1612  | 138.00]    | AMP | 5887.2     | -79.97  |
| 505596 | [EXPLOR 4  | 138.00]    | AMP | 5538.7     | -76.24  |
| 505604 | [DENISON4  | 138.00]    | AMP | 3070.6     | -75.83  |
| 510880 | [COALGTP4  | 138.00]    | AMP | 6100.4     | -77.54  |
| 510887 | [АТОКА4    | 138.00]    | AMP | 5810.7     | -79.47  |
| 510916 | [ALLEN4    | 138.00]    | AMP | 5535.4     | -76.48  |
| 510935 | [EXPCOLT4  | 138.00]    | AMP | 7548.2     | -77.68  |
| 515157 | [BROWN 4   | 138.00]    | AMP | 8034.1     | -77.38  |
| 515159 | [COLBRTP4  | 138.00]    | AMP | 6148.5     | -76.04  |
| 515192 | [LULA 4    | 138.00]    | AMP | 9233.0     | -79.26  |
| 520862 | [COLGATE4  | 138.00]    | AMP | 6023.9     | -79.89  |
| 521044 | [RUSSETT4  | 138.00]    | AMP | 10881.1    | -77.82  |
| 521075 | [STONEWAL  | LH138.00]  | AMP | 8656.0     | -77.89  |
| 521108 | [KRSYJCTN4 | 138.00]    | AMP | 7720.9     | -77.94  |
| 521109 | [KRSYJCTS4 | 138.00]    | AMP | 7505.9     | -77.62  |
| 588270 | [ASGI1611  | 138.00]    | AMP | 4195.6     | -77.20  |
| 505595 | [GREASYC4  | 138.00]    | AMP | 7183.0     | -76.76  |
| 510862 | [COALGAT4  | 138.00]    | AMP | 5877.4     | -77.43  |
| 510863 | [ALLENNG4  | 138.00]    | AMP | 5586.7     | -76.84  |
| 510882 | [ATOKA2    | 69.000]    | AMP | 4001.0     | -77.93  |
| 510884 | [HOLDEXP4  | 138.00]    | AMP | 5406.3     | -76.13  |
| 510895 | [LEHIGH-4  | 138.00]    | AMP | 5704.8     | -77.92  |
| 510936 | [EXPCOLG4  | 138.00]    | AMP | 7445.0     | -77.63  |
| 510949 | [WAPANUCKA | 4138.00]   | AMP | 5824.3     | -79.67  |
| 515120 | [RUSSET-4  | 138.00]    | AMP | 10948.2    | -77.85  |
| 515153 | [COLEMNT4  | 138.00]    | AMP | 8011.1     | -77.37  |
| 515155 | [BODLE 4   | 138.00]    | AMP | 6043.3     | -75.60  |
| 515176 | [BUTRFLD4  | 138.00]    | AMP | 5573.2     | -75.86  |
| 515191 | [LULA 2    | 69.000]    | AMP | 5945.9     | -81.20  |
| 515500 | [FRISCC04  | 138.00]    | AMP | 7990.5     | -79.96  |
| 520818 | [ASHLAND4  | 138.00]    | AMP | 4684.1     | -80.25  |
| 520963 | [KIERSEY4  | 138.00]    | AMP | 5409.9     | -75.28  |
| 520969 | [LASALLE4  | 138.00]    | AMP | 6494.9     | -76.67  |
| 521049 | [SCOLEMN4  | 138.00]    | AMP | 6984.9     | -78.98  |
| 521187 | [ATKEAST4  | 138.00]    | AMP | 5107.8     | -80.94  |

Southwest Power Pool, Inc.

| 587200 | [GEN-2016-     | 030138.00] | AMP | 5853.6  | -78.10 |
|--------|----------------|------------|-----|---------|--------|
| 505592 | -<br>[WELEETK4 | 138.00]    | AMP | 16081.9 | -80.03 |
| 510879 | ATOKA P2       | 69.000]    | AMP | 3429.2  | -74.37 |
| 510891 | LANE 2         | 69.000     | AMP | 2766.5  | -68.58 |
| 514808 | JOHNCO 4       | 138.00]    | AMP | 14543.9 | -82.92 |
| 515147 | GLASSES4       | 138.00]    | AMP | 7929.2  | -75.46 |
| 515152 | BROWNTP4       | 138.00]    | AMP | 7963.9  | -77.31 |
| 515154 | EXPLRPL4       | 138.00]    | AMP | 4407.4  | -76.29 |
| 515172 | [SPRNDAL4      | 138.00]    | AMP | 11047.1 | -78.04 |
| 515190 | [AOCPT 2       | 69.000]    | AMP | 5644.5  | -74.86 |
| 515193 | [COLBRT-4      | 138.00]    | AMP | 4733.0  | -75.15 |
| 515362 | [HARDEN 4      | 138.00]    | AMP | 8121.3  | -80.14 |
| 515511 | [SOCPMPT2      | 69.000]    | AMP | 5605.8  | -80.79 |
| 520860 | [COLBERT4      | 138.00]    | AMP | 4727.1  | -75.07 |
| 520884 | [DURANT 4      | 138.00]    | AMP | 5390.1  | -81.42 |
| 520968 | [LANE 4        | 138.00]    | AMP | 4836.0  | -81.59 |
| 520971 | [LATTAJT4      | 138.00]    | AMP | 5533.2  | -76.11 |
| 521030 | [PITTSBG4      | 138.00]    | AMP | 4428.0  | -80.37 |
| 588290 | [ASGI1613      | 138.00]    | AMP | 4684.1  | -80.25 |
| 505590 | [WELEETK5      | 161.00]    | AMP | 6448.0  | -82.87 |
| 505594 | [CHECOTA4      | 138.00]    | AMP | 6180.2  | -77.04 |
| 510874 | [MCGEETP2      | 69.000]    | AMP | 2241.6  | -64.61 |
| 510885 | [PITTSB-2      | 69.000]    | AMP | 2303.3  | -63.21 |
| 510902 | [WELETK4       | 138.00]    | AMP | 16758.3 | -80.45 |
| 514809 | [JOHNCO 7      | 345.00]    | AMP | 9321.6  | -84.50 |
| 515122 | [SXMLCKT4      | 138.00]    | AMP | 10689.8 | -79.89 |
| 515149 | [MADINDT4      | 138.00]    | AMP | 7920.0  | -75.51 |
| 515150 | [CANEYCK4      | 138.00]    | AMP | 8365.3  | -77.53 |
| 515151 | [LTLCITY4      | 138.00]    | AMP | 6982.4  | -77.21 |
| 515162 | [FNDTION4      | 138.00]    | AMP | 11212.2 | -78.32 |
| 515164 | [ROCKYPT4      | 138.00]    | AMP | 10037.1 | -80.54 |
| 515183 | [SOCPUMP2      | 69.000]    | AMP | 5563.8  | -80.74 |
| 515189 | [AOCPA 2       | 69.000]    | AMP | 6737.0  | -77.62 |
| 515197 | [HOMERTP2      | 69.000]    | AMP | 5498.2  | -74.30 |
| 515318 | [SOTHADA4      | 138.00]    | AMP | 11088.5 | -80.80 |
| 520426 | [SEAWAY4       | 138.00]    | AMP | 3970.1  | -75.00 |
| 520826 | [BENNGTN4      | 138.00]    | AMP | 4721.8  | -83.15 |
| 520874 | [DARWIN 4      | 138.00]    | AMP | 4694.5  | -83.64 |
| 520970 | [LATTA 4       | 138.00]    | AMP | 4575.5  | -74.95 |
| 521014 | [OILCNTR4      | 138.00]    | AMP | 5008.6  | -75.75 |
| 521026 | [PHAROAH4      | 138.00]    | AMP | 15721.9 | -80.05 |
| 521047 | [SAVANNA4      | 138.00]    | AMP | 5096.9  | -80.50 |

#### ASGI-2016-013 17SP

PSS®E-32.2.0 ASCC SHORT CIRCUIT CURRENTS

THU, JUN 15 2017

10:33 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 17S WITH MMWG 15S, MRO 16W TOPO/16S PROF, SERC 16S

#### OPTIONS USED:

#### - FLAT CONDITIONS

- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

|        |              |          |     | THREE PHAS | E FAULT |
|--------|--------------|----------|-----|------------|---------|
| Х      | BUS          | X        |     | /I+/       | AN(I+)  |
| 520818 | [ASHLAND4    | 138.00]  | AMP | 4664.9     | -80.22  |
| 520862 | [COLGATE4    | 138.00]  | AMP | 5998.2     | -79.87  |
| 521030 | [PITTSBG4    | 138.00]  | AMP | 4406.6     | -80.33  |
| 588290 | [ASGI1613    | 138.00]  | AMP | 4664.9     | -80.22  |
| 520406 | [TUPELO4     | 138.00]  | AMP | 9719.7     | -79.20  |
| 521047 | [SAVANNA4    | 138.00]  | AMP | 5062.2     | -80.43  |
| 505600 | [TUPELO 4    | 138.00]  | AMP | 10654.9    | -79.04  |
| 520934 | [HARTSHN4    | 138.00]  | AMP | 8361.4     | -80.25  |
| 505598 | [ALLEN 4     | 138.00]  | AMP | 5477.7     | -76.43  |
| 505602 | [S BROWN4    | 138.00]  | AMP | 8061.5     | -77.45  |
| 510881 | [ALLENGT4    | 138.00]  | AMP | 10312.2    | -78.88  |
| 510897 | [LONEOAK4    | 138.00]  | AMP | 8571.0     | -80.25  |
| 520986 | [MANNING4    | 138.00]  | AMP | 4258.5     | -80.24  |
| 521071 | [TUPLOTP4    | 138.00]  | AMP | 10367.6    | -78.88  |
| 521188 | [ATKWEST4    | 138.00]  | AMP | 5189.0     | -80.78  |
| 585330 | [ASGI-2015-0 | 0138.00] | AMP | 4686.3     | -80.23  |
| 588280 | [ASGI1612    | 138.00]  | AMP | 5869.8     | -79.98  |
| 505596 | [EXPLOR 4    | 138.00]  | AMP | 5414.0     | -76.12  |
| 505604 | DENISON4     | 138.00]  | AMP | 3068.7     | -75.83  |
| 510880 | COALGTP4     | 138.00]  | AMP | 6081.8     | -77.55  |
| 510887 | [АТОКА4      | 138.00]  | AMP | 5796.6     | -79.47  |
| 510896 | [LONEOAK2    | 69.000]  | AMP | 7025.7     | -83.13  |
| 510906 | [SMCALTP4    | 138.00]  | AMP | 8273.8     | -80.57  |
| 510908 | [MCALEST4    | 138.00]  | AMP | 9551.0     | -81.93  |
| 510916 | ALLEN4       | 138.00]  | AMP | 5470.3     | -76.43  |
| 510935 | [EXPCOLT4    | 138.00]  | AMP | 7515.2     | -77.69  |
| 510944 | [ENOWILT4    | 138.00]  | AMP | 8400.2     | -79.87  |
| 515157 | [BROWN 4     | 138.00]  | AMP | 8021.4     | -77.39  |
| 515159 | [COLBRTP4    | 138.00]  | AMP | 6141.1     | -76.06  |
| 515192 | [LULA 4      | 138.00]  | AMP | 9192.9     | -79.26  |
| 520418 | LIMESTONEJ4  | 138.00]  | AMP | 3540.7     | -80.24  |
| 520844 | CARBON 4     | 138.00]  | AMP | 6628.0     | -80.21  |
| 521044 | RUSSETT4     | 138.00]  | AMP | 10861.7    | -77.84  |
| 521075 | STONEWAL L   | H138.00] | AMP | 8615.8     | -77.90  |
| 521108 | KRSYJCTN4    | 138.00]  | AMP | 7709.4     | -77.95  |
| 521109 | KRSYJCTS4    | 138.00]  | AMP | 7494.8     | -77.63  |
| 588270 | [ASGI1611    | 138.00]  | AMP | 4158.6     | -77.16  |

#### ASGI-2016-013 25SP

PSS®E-32.2.0 ASCC SHORT CIRCUIT CURRENTS

THU, JUN 15 2017

10:33 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 20255 WITH MMWG 20245, MRO & SERC 2025 SUMMER

#### OPTIONS USED:

#### - FLAT CONDITIONS

- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

|        |               |          |     | THREE PHAS | E FAULT |
|--------|---------------|----------|-----|------------|---------|
| Х      | BUS           | X        |     | /I+/       | AN(I+)  |
| 520818 | [ASHLAND4     | 138.00]  | AMP | 4684.1     | -80.25  |
| 520862 | [COLGATE4     | 138.00]  | AMP | 6023.9     | -79.89  |
| 521030 | [PITTSBG4     | 138.00]  | AMP | 4428.0     | -80.37  |
| 588290 | [ASGI1613     | 138.00]  | AMP | 4684.1     | -80.25  |
| 520406 | [TUPELO4      | 138.00]  | AMP | 9776.4     | -79.20  |
| 521047 | [SAVANNA4     | 138.00]  | AMP | 5096.9     | -80.50  |
| 505600 | [TUPELO 4     | 138.00]  | AMP | 10721.6    | -79.04  |
| 520934 | [HARTSHN4     | 138.00]  | AMP | 8477.6     | -80.40  |
| 505598 | [ALLEN 4      | 138.00]  | AMP | 5543.0     | -76.48  |
| 505602 | [S BROWN4     | 138.00]  | AMP | 8074.3     | -77.43  |
| 510881 | [ALLENGT4     | 138.00]  | AMP | 10374.4    | -78.88  |
| 510897 | [LONEOAK4     | 138.00]  | AMP | 8693.8     | -80.41  |
| 520986 | [MANNING4     | 138.00]  | AMP | 4288.4     | -80.32  |
| 521071 | [TUPLOTP4     | 138.00]  | AMP | 10427.0    | -78.87  |
| 521188 | [ATKWEST4     | 138.00]  | AMP | 5200.9     | -80.78  |
| 585330 | [ASGI-2015-00 | 0138.00] | AMP | 4699.2     | -80.23  |
| 588280 | [ASGI1612     | 138.00]  | AMP | 5887.2     | -79.97  |
| 505596 | [EXPLOR 4     | 138.00]  | AMP | 5538.7     | -76.24  |
| 505604 | [DENISON4     | 138.00]  | AMP | 3070.6     | -75.83  |
| 510880 | [COALGTP4     | 138.00]  | AMP | 6100.4     | -77.54  |
| 510887 | [ATOKA4       | 138.00]  | AMP | 5810.7     | -79.47  |
| 510896 | [LONEOAK2     | 69.000]  | AMP | 7052.0     | -83.21  |
| 510906 | [SMCALTP4     | 138.00]  | AMP | 8396.3     | -80.73  |
| 510908 | [MCALEST4     | 138.00]  | AMP | 9717.4     | -82.14  |
| 510916 | [ALLEN4       | 138.00]  | AMP | 5535.4     | -76.48  |
| 510935 | [EXPCOLT4     | 138.00]  | AMP | 7548.2     | -77.68  |
| 510944 | [ENOWILT4     | 138.00]  | AMP | 8517.2     | -80.02  |
| 515157 | [BROWN 4      | 138.00]  | AMP | 8034.1     | -77.38  |
| 515159 | [COLBRTP4     | 138.00]  | AMP | 6148.5     | -76.04  |
| 515192 | [LULA 4       | 138.00]  | AMP | 9233.0     | -79.26  |
| 520418 | [LIMESTONEJ4  | 138.00]  | AMP | 3561.4     | -80.30  |
| 520844 | [CARBON 4     | 138.00]  | AMP | 6717.9     | -80.36  |
| 521044 | [RUSSETT4     | 138.00]  | AMP | 10881.1    | -77.82  |
| 521075 | [STONEWAL LH  | 138.00]  | AMP | 8656.0     | -77.89  |
| 521108 | [KRSYJCTN4    | 138.00]  | AMP | 7720.9     | -77.94  |
| 521109 | [KRSYJCTS4    | 138.00]  | AMP | 7505.9     | -77.62  |
| 588270 | [ASGI1611     | 138.00]  | AMP | 4195.6     | -77.20  |

## CONCLUSION

An Affected System Interconnection Customer has requested an Affected System Impact Study (ASIS) consistent with Southwest Power Pool (SPP) Open Access Transmission Tariff (OATT) for interconnection requests into the system of PEC. The PEC facilities connect with the facilities of SWPA and WFEC. The three Group 14 requests in this study are: ASGI-2016-011, ASGI-2016-012, & ASGI-2016-013. All three requests are thermal units totaling 7.4, 61.7, and 4.9 MW, respectively.

Power flow and stability analysis has determined that ASGI-2016-011, ASGI-2016-012, & ASGI-2016-013 can interconnect all of their respective generation (mentioned above) with ERIS prior to the completion of the required Network Upgrades, listed within **Table 2** of this report. It should be noted that although this ASIS analyzed many of the most probable contingencies, it is not an all-inclusive list that can account for every operational situation. Additionally, the generator may not be able to inject any power onto the Transmission System due to constraints that fall below the threshold of mitigation for a Generator Interconnection request. Because of this, it is likely that the Customer(s) may be required to reduce their generation output to **0 MW** under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Transient stability analysis for this ASIS has determined that no violations were observed for the transmission system for the forty-nine (49) selected faults for the interconnection of ASGI-2016-011, ASGI-2016-012, and ASGI-2016-013.

Any changes to these assumptions may require a re-study of this ASIS at the expense of the Customer. Changed assumptions may include, but are not limited to: one or more previously-queued requests not included within this study executing an interconnection agreement and commencing commercial operation.

Nothing in this System Impact Study constitutes a request for transmission service or confers upon the Interconnection Customer any right to receive transmission service.