Limited Operation Impact Study for Generator Interconnection

0-0-0

000

000000

ASGI-2016-001 ASGI-2016-002

August 2016 Generator Interconnection

000000

000

Revision History

Date	Author	Change Description
08/24/2016	SPP	Limited Operation Impact Study (LOIS) for ASGI-2016-001 and ASGI-2016-002 Report Revision 0 Issued

Executive Summary

<OMITTED TEXT> (Affected System Interconnection Customer) has requested an Affected System Limited Operation System Impact Study (AS-LOIS) consistent with Southwest Power Pool Open Access Transmission Tariff (OATT) for ASGI-2016-001 and ASGI-2016-002. ASGI-2016-001 (2.5MW) and ASGI-2016-002 (0.35MW) wind generating facilities are to be interconnected into the Distribution System of South Plains Electric Cooperative, Inc. (SPEC). The South Plains Electric Cooperative system interconnects to Southwestern Public Service (SPS) in Lubbock County, Texas. ASGI-2016-001 and ASGI-2016-002 have requested this Limited Operation Interconnection Study (LOIS) to determine the impacts of interconnecting to the transmission system before all required Network Upgrades identified in the DISIS-2014-002, DISIS-2015-001, DISIS-2015-002, and potentially DISIS-2016-001 (or most recent iteration) Impact Study can be placed into service.

This Affected System LOIS addresses the effects of interconnecting the generators to the rest of the transmission system for the system topology and conditions as expected on December 31, 2016 and prior to the completion of the required Network Upgrades listed in Table 2. These required Network Upgrades are not expected to be in service by January 1, 2017 for ASGI-2016-001 and August 1, 2016 for ASGI-2016-002. ASGI-2016-001 is requesting the interconnection of one (1) Envision 2.5 MW wind turbine and associated facilities interconnecting to SPEC Distribution connected at the Wolfforth 115kV substation in Lubbock County, Texas. ASGI-2016-002 is requesting an uprate to ASGI-2015-002 of 350kW and associated facilities interconnecting at the SP-Yuma 115kV substation in Lubbock County, Texas. The Affected System LOIS assumes that only the higher queued projects listed within Table 1 of this study might go into service before the completion of all Network Upgrades identified within Table 2 of this report. If additional generation projects, listed within Table 3, with queue priority equal to or higher than the study project request rights to go into commercial operation before all Network Upgrades identified within Table 2 of this report are completed, this Affected System LOIS may need to be restudied to ensure that interconnection service remains for the customer's request.

Power flow analysis from this Affected System LOIS has determined that the ASGI-2016-001 and ASGI-2016-002 requests can interconnect 2.85 MW of generation with Energy Resource Interconnection Service (ERIS) prior to the completion of the required Network Upgrades, listed within Table 2 of this report, provided the Network Upgrades are able to be placed in service prior to December 31, 2020. Should any other projects, other than those listed within Table 1 of this report, come into service an additional study may be required to determine if any limited operation service is available. It should be noted that although this Affected System LOIS analyzed many of the most probable contingencies, it is not an all-inclusive list that can account for every operational situation. Additionally, the generator may not be able to inject any power onto the Transmission System due to constraints that fall below the threshold of mitigation for a Generator Interconnection request. Because of this, it is likely that the Customer(s) may be required to reduce their generation output to **0 MW** under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Transient stability and short circuit analysis was not performed for this LOIS study. Transient stability analysis will be conducted as part of the DISIS-2016-001 study.

Nothing in this study should be construed as a guarantee of delivery or transmission service. If the customer(s) wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer(s).

Table of Contents

levision Historyi
xecutive Summaryi
able of Contents iii
Purpose1
acilities7
Generating Facility
Interconnection Facilities
Base Case Network Upgrades
Power Flow Analysis
Model Preparation
Study Methodology and Criteria
Results
Curtailment and System Reliability10
tability Analysis
Conclusion

Purpose

<OMITTED TEXT> (Affected System Interconnection Customer) has requested an Affected System Limited Operation System Impact Study (AS-LOIS) consistent with the Southwest Power Pool (SPP) Open Access Transmission Tariff (OATT) for interconnection requests into the Transmission System of Southwest Public Service (SPS).

The purpose of this study is to evaluate the impacts of interconnecting ASGI-2016-001 and ASGI-2016-002 requests. ASGI-2016-001 is requesting the interconnection of one (1) Envision 2.5 MW wind turbine and associated facilities interconnecting to SPEC Distribution connected Wolfforth 115kV substation in Lubbock County, Texas. ASGI-2016-002 is requesting an uprate to ASGI-2015-002 of 350kW and associated facilities interconnecting at the SP-Yuma 115kV substation in Lubbock County, Texas. The Affected System Interconnection Customer(s) have requested this amount to be studied with Energy Resource Interconnection Service (ERIS) to commence on or around January, 2017 and August, 2016.

Only power flow analysis was conducted for this Limited Operation Interconnection Service. Limited Operation Studies are conducted under GIA Section 5.9.

The LOIS considers the Base Case as well as all Generating Facilities (and with respect to (b) below, any identified Network Upgrades associated with such higher queued interconnection) that, on the date the LOIS is commenced:

- a) are directly interconnected to the Transmission System;
- b) are interconnected to Affected Systems and may have an impact on the Interconnection Request;
- c) have a pending higher queued Interconnection Request to interconnect to the Transmission System listed in Table 1; or
- d) have no Queue Position but have executed an LGIA or requested that an unexecuted LGIA be filed with FERC.

Any changes to these assumptions, for example, one or more of the previously queued requests not included within this study execute an interconnection agreement and commencing commercial operation, may require a re-study of this LOIS at the expense of the Customer(s).

Nothing within this System Impact Study constitutes a request for transmission service or confers upon the Interconnection Customer(s) any right to receive transmission service rights. Should the Customer(s) require transmission service, those rights should be requested through SPP's Open Access Same-Time Information System (OASIS).

This LOIS study included prior queued generation interconnection requests. Those listed within Table 1 are the generation interconnection requests that are assumed to have rights to either full or partial interconnection service prior to the requested January 2017 in-service for this AS-LOIS. Also listed in Table 1 are both the amount of MWs of interconnection service expected at the

effective time of this study and the total MWs requested of interconnection service, the fuel type, the point of interconnection (POI), and the current status of each particular prior queued request.

Project	MW	Total MW	Fuel Source	POI	Status
ASGI-2010-010	42.2	42.2	Gas	Lovington 115kV	Lea County Affected Study
ASGI-2010-020	30	30	Wind	Tap LE-Tatum – LE Crossroads 69kV	Lea County Affected Study
ASGI-2010-021	15	15	Wind	Tap LE-Saunders Tap – LE Anderson 69kV	Lea County Affected Study
ASGI-2011-001	27.3	27.3	Wind	Lovington 115kV	COMMERCIAL OPERATION
ASGI-2011-003	10	10	Wind	Hendricks 69kV	COMMERCIAL OPERATION
ASGI-2011-004	20	20	Wind	Pleasant Hill 69kV	UNDER STUDY
ASGI-2012-002	18.15	18.15	Wind	FE-Clovis Interchange 115kV	UNDER STUDY
ASGI-2013-002	18.4	18.4	Wind	FE Tucumcari 115kV	UNDER STUDY
ASGI-2013-003	18.4	18.4	Wind	FE Clovis 115kV	UNDER STUDY
ASGI-2013-005	1.65	1.65	Wind	FE Clovis 115kV	UNDER STUDY
ASGI-2013-006	2	2	Wind	SP-Erskine 115kV	COMMERICAL OPERATION
ASGI-2014-001	2.5	2.5	Wind	SP-Erskine 115kV	COMMERICAL OPERATION
ASGI-2015-002	2.3	2.3	Wind	SP-Yuma 115kV	COMMERICAL OPERATION
GEN-2001-033	180	180	Wind	San Juan Tap 230kV	IA FULLY EXECUTED/COMMERCIAL OPERATION (120MW)
GEN-2001-036	80	80	Wind	Norton 115kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2006-018	170	170	СТ	TUCO Interchange 230kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2006-026	502	502	Gas	Hobbs 230kV & Hobbs 115kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2008-022	300	300	Wind	Tap Tolk - Eddy County (Crossroads) 345kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2010-006	205	205	Gas	Jones 230kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2010-046	56	56	Gas	TUCO Interchange 230kV	IA FULLY EXECUTED/ON SCHEDULE FOR 2016
GEN-2011-025	80	80	Wind	Tap Floyd County - Crosby County 115kV	IA FULLY EXECUTED/ON SCHEDULE FOR 2016
GEN-2011-045	205	205	NG CT	Jones 230kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2011-046	27	27	Diesel CT	Lopez 115kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2011-048	175	175	СТ	Mustang 230kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2012-001	61.2	61.2	Wind	Cirrus Tap 230kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2012-020	478	478	Wind	TUCO Interchange 230kV	IA FULLY EXECUTED/ON SCHEDULE FOR 2016

Table 1: Generation Requests Included within LOIS

Project	MW	Total MW	Fuel Source	POI	Status
GEN-2012-034	7	7	ст	Mustang 230kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2012-035	7	7	ст	Mustang 230kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2012-036	7	7	ст	Mustang 230kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2012-037	203	203	СТ	TUCO Interchange 345kV	IA FULLY EXECUTED/COMMERCIAL OPERATION
GEN-2013-016	203	203	СТ	TUCO Interchange 345kV	IA FULLY EXECUTED/ON SCHEDULE FOR 2017
GEN-2013-022	25	25	Solar	Norton 115kV	IA FULLY EXECUTED/ON SCHEDULE FOR 2016
GEN-2014-033	70	70	Solar	Chaves County 115kV	IA FULLY EXECUTED/ON SCHEDULE FOR 2016
GEN-2014-034	70	70	Solar	Chaves County 115kV	IA FULLY EXECUTED/ON SCHEDULE FOR 2016
GEN-2014-040	320.4	320.4	Wind	Castro 115kV	IA FULLY EXECUTED/ON SCHEDULE FOR 2016
SPS Distributed (Hopi)	10	10	Solar	Hopi 115kV	COMMERCIAL OPERATION
SPS Distributed (Monument)	10	10	Solar	Monument 115kV	COMMERCIAL OPERATION
SPS Distributed (Lea Road)	10	10	Solar	Lea Road 115kV	COMMERCIAL OPERATION
SPS Distributed (Jal)	10	10	Solar	S Jal 115kV	COMMERCIAL OPERATION
SPS Distributed (Ocotillo)	10	10	Solar	S_Jal 115kV	COMMERCIAL OPERATION
SPS Distributed (Yuma)	2.57	2.57	Wind	SP-Yuma 69kV	COMMERCIAL OPERATION
ASGI-2016-001	2.5	2.5	Wind	Wolfforth 115kV	UNDER AFFECTED SYSTEM LOIS STUDY
ASGI-2016-002	0.35	0.35	Wind	SP-Yuma 115kV	UNDER AFFECTED SYSTEM LOIS STUDY

This LOIS was required because the Affected System Interconnection Customer(s) are requesting interconnection prior to the completion of higher queued required upgrades listed within the latest iteration of their Definitive Interconnection System Impact Study (DISIS).

Table 2 below lists the higher queued required upgrade projects for which these requests have cost responsibility. DISIS-2014-002-6 Group 06 (South Texas Pan Handle/New Mexico Area) Impact Restudy was posted March 11, 2016, DISIS-2015-001-2 Group 06 Impact Restudy was posted March 9, 2016, and DISIS_2015-002-1 Group 06 Impact Restudy was posted August 1, 2016. The clusters have been restudied since the original posting.

DISIS-2014-002 reports can be located at the following Generation Interconnection Study URL: <u>http://sppoasis.spp.org/documents/swpp/transmission/GenStudies.cfm?YearType=2014 Impact Studies</u>

DISIS-2015-001 and DISIS-2015-002 reports can be located at the following Generation Interconnection Study URL:

http://sppoasis.spp.org/documents/swpp/transmission/GenStudies.cfm?YearType=2015 Impact S tudies

ASGI-2016-001 and ASGI-2016-002 are included within the DISIS-2016-001 cluster and will be evaluated for impacts as part of the DISIS-2016-001 study completion.

 Table 2: Upgrade Projects not included but Required for Full Interconnection

 Service

Upgrade Project	Project Type Description			Study Assignment
Tolk – Plant X 230kV circuit #1 & circuit #2 rebuild	Rebuild	Rebuild circuit #1 and circuit #2 to at least 1200 amps	Executed GIAs with anticipated completion date of 12/2017.	DISIS-2014-002
TUCO 345/230/13kV Transformer replacement	Transformer Replacement	Replace existing TUCO 345/230/13kV 560MVA Rate B transformer circuit #1 with 644MVA Rate B transformer	Executed GIAs with anticipated completion date of 10/2020.	DISIS-2014-002
Crawfish Draw 345/230kV Substation and Transformer	Build Substation and Transformer	Tap and tie in Border – TUCO 345kV and TUCO – Swisher 230kV. Build Crawfish Draw 345/230 Substation and 345/230/13kV transformer	Interconnection Facilities Studies (IFS) Pending	DISIS-2015-001
Kress Interchange – Swisher 230kV	ress Interchange – Swisher 230kV Replace terminal equipment equipment 230kV		Interconnection Facilities Studies (IFS) Pending	DISIS-2015-001
Oklaunion 345kV Reactive Power	klaunion 345kV Reactive Power Power Bank(s) Klaunion 345kV Reactive Power Bank(s) Bank(s) Klaunion Bank(s) Klaunion Bank(s) Ba		Interconnection Facilities Studies (IFS) Pending	DISIS-2015-001
Border – Chisholm 345kV circuit #2	order – Chisholm 345kV circuit #2 Build Second Circuit Build Second Circuit Build Second Circuit Build approximately 25 miles of second circuit 345kV circuit from Border – Chisholm		Interconnection Facilities Studies (IFS) Pending	DISIS-2015-002
Border 345kV Reactive Power	Build Reactive Power Devices	Install six (6) steps of 50Mvar Capacitor Bank(s) and +300Mvars Capacitive Static Var Compensator (SVC)	Interconnection Facilities Studies (IFS) Pending	DISIS-2015-002

Table 2: Upgrade Projects not included but Required for Full InterconnectionService

Upgrade Project	Туре	Description	Status	Study Assignment
Chisholm 345kV Substation	45kV Substation 15kV Substation		Interconnection Facilities Studies (IFS) Pending	DISIS-2015-002
Crawfish Draw – Border 345kV circuit #2	sh Draw – Border 5kV circuit #2 Build Second Circuit Circuit Border Border		Interconnection Facilities Studies (IFS) Pending	DISIS-2015-002
GEN-2014-074 Tap Dynamic Reactive Power Support	Build Reactive Power Device	Install Statcom at GEN- 2014-074	Interconnection Facilities Studies (IFS) Pending	DISIS-2015-002
Grapevine – Nichols 230kV circuit #1	Replace Terminal Equipment	Replace terminal equipment for Grapevine – Nichols circuit	Interconnection Facilities Studies (IFS) Pending	DISIS-2015-002
Grapevine – Wheeler 230kV circuit #1	Replace Terminal Equipment	Replace terminal equipment for Grapevine – Wheeler circuit	Interconnection Facilities Studies (IFS) Pending	DISIS-2015-002
Oklaunion 345kV Reactive Power Support Incremental Upgrade	Build Reactive Power Device(s)	Install +/-100Mvars Capacitive and inductive Static Var Compensator (SVC	Interconnection Facilities Studies (IFS) Pending	DISIS-2015-002
Wheeler – Sweetwater 230kV circuit #1	Rebuild	Rebuild AEP's portion of the circuit and replace terminal equipment on SPS's portion	Interconnection Facilities Studies (IFS) Pending	DISIS-2015-002
Potential DISIS 2016-001 Network Upgrade(s)			DISIS Study Pending	DISIS-2016-001

Any changes to these assumptions, for example, one or more of the previously queued requests not included within this study execute an interconnection agreement and commencing commercial operation, may require a re-study of this Affected System LOIS at the expense of the Customer(s).

The higher or equally queued projects that were not included in this study are listed in Table 3. While this list is not all inclusive it is a list of the most probable and affecting prior queued requests that were not included within this LOIS, either because no request for an LOIS has been made or the request is on suspension, etc.

Table 3: Higher or Equally Queued GI Requests not included within LOIS

Project	MW	Total MW	Fuel Source	POI	Status
GEN-2013-027	150	150	Wind	Tap Tolk - Yoakum 230kV	IA FULLY EXECUTED/ON
GEN-2014-035	30	30	Solar	Chaves County 115kV	IA FULLY EXECUTED/ON
GEN-2014-047	40	40	Solar	Tap Tolk - Eddy County (Crossroads) 345kV	IA FULLY EXECUTED/ON
GEN-2014-074	152	152	Wind	Tap TUCO Interchange - Oklaunion (GEN-2014-074 Tap) 345kV	FACILITY STUDY STAGE
GEN-2014-012	225	225	Gas	Tap Hobbs Interchange - Andrews 230kV	IA FULLY EXECUTED/ON SCHEDULE FOR 2019
GEN-2015-014	150	150	Wind	Tap Cochran - Lehman 115kV	FACILITY STUDY STAGE
GEN-2015-020	100	100	Wind	Oasis 115kV	FACILITY STUDY STAGE
GEN-2015-022	112	112	Wind	Swisher 115kV	FACILITY STUDY STAGE
GEN-2015-031	150.5	150.5	Solar	Tap Amarillo South - Swisher 230kV	FACILITY STUDY STAGE
GEN-2015-031	150.5	150.5	Wind	Tap Amarillo South - Swisher 230kV	FACILITY STUDY STAGE
GEN-2015-056	101.2	101.2	Wind	Crossroads 345kV	FACILITY STUDY STAGE
GEN-2015-058	50	50	Wind	Atoka 115kV	FACILITY STUDY STAGE
GEN-2015-068	300	300	Wind	TUCO Interchange 345kV	FACILITY STUDY STAGE
GEN-2015-068	300	300	Solar	TUCO Interchange 345kV	FACILITY STUDY STAGE
GEN-2015-075	51.5	51.5	Wind	Carlisle 69kV	FACILITY STUDY STAGE
GEN-2015-079				Tap Yoakum - Hobbs Interchange	FACILITY STUDY STAGE
	129.2	129.2	Wind	230kV	
GEN-2015-080				Tap Yoakum - Hobbs Interchange	FACILITY STUDY STAGE
	129.2	129.2	Solar	230kV	
GEN-2015-018	80	80	Wind	Tap Bailey - Curry Co. 115kV	DISIS STUDY STAGE
				Tap TUCO - OKU 345kV (GEN-2014-	DISIS STUDY STAGE
GEN-2015-033	152	152	Wind	074 Tap)	
GEN-2015-039	50	50	Solar	Tap Deaf Smith - Plant X 230 kV	DISIS STUDY STAGE
GEN-2015-040	50	50	Solar	Mustang 230kV	DISIS STUDY STAGE
GEN-2015-041	5	5	СТ	TUCO Interchange 345kV	DISIS STUDY STAGE
GEN-2015-078	50	50	Solar	Mustang 115kV	DISIS STUDY STAGE
GEN-2016-002	74	74	Wind	Happy 115 kV substation	DISIS STUDY STAGE
GEN-2016-015	100	100	Solar	Andrews 230kV	DISIS STUDY STAGE
GEN-2016-038	300	300	Wind	Harrington 230kV	DISIS STUDY STAGE
GEN-2016-039	112	112	Solar	Swisher 230kV	DISIS STUDY STAGE
GEN-2016-056	200	200	Wind	Carlisle 230 kV	DISIS STUDY STAGE
GEN-2016-058	200	200	Solar	Yoakum 345kV	DISIS STUDY STAGE
GEN-2016-059	300	300	Wind	Harrington 230kV	DISIS STUDY STAGE
GEN-2016-062	250.7	250.7	Wind	Andrews 230kV	DISIS STUDY STAGE
GEN-2016-069	31.35	31.35	Solar	Chaves County 115kV	DISIS STUDY STAGE

Nothing in this System Impact Study constitutes a request for transmission service or grants the Interconnection Customer(s) any rights to transmission service.

Facilities

Generating Facility

The Affected System Interconnection Customers' request is to interconnect two requests, ASGI-2016-001 and ASGI-2016-002. ASGI-2016-001 is requesting the interconnection of one (1) Envision 2.5 MW wind turbine and associated facilities interconnecting SPEC Distribution connected to Wolfforth 115kV substation in Lubbock County, Texas. ASGI-2016-002 is requesting an uprate to ASGI-2015-002 of 350kW and associated facilities interconnecting at the SP-Yuma 115kV substation in Lubbock County, Texas.

Interconnection Facilities

The POI for ASGI-2016-001 Interconnection Customer connects to the Affected System Wolfforth 115kV substation in Lubbock County, Texas. Figure 1 depicts the one-line diagram for the POI and the Interconnection Request(s).

Figure 1: Proposed ASGI-2016-001 Configuration and Request Power Flow Model

The POI for ASGI-2016-002 Interconnection Customer connects to the Affected System at the SP-Yuma 115kV substation in Lubbock County, Texas. Figure 2 depicts the one-line diagram for the POI and the Interconnection Request(s).

Figure 2: Proposed ASGI-2016-002 Configuration and Request Power Flow Model

Base Case Network Upgrades

The Network Upgrades included within the cases used for this Affected System LOIS study are those facilities that are a part of the SPP Transmission Expansion Plan or the Balanced Portfolio projects that have in-service dates prior to the ASGI-2016-001 and ASGI-2016-002 Affected System LOIS. These facilities have an approved Notification to Construct (NTC), or are in construction stages and expected to be in-service at the effective time of this study. No other upgrades were included for this LOIS. If for some reason, construction on these projects is delayed or discontinued, a restudy may be needed to determine the interconnection service availability of the Customer(s).

Power Flow Analysis

Power flow analysis is used to determine if the transmission system can accommodate the injection from the request without violating thermal or voltage transmission planning criteria.

Model Preparation

Power flow analysis was performed using modified versions of the 2015 series of transmission service request study models including the 2016 Winter Peak (16WP), 2017 Spring (17G), and 2017 Summer Peak (17SP), 2020 Light (20L), and 2020 Summer (SP) and Winter (WP) peak seasonal models. To incorporate the Interconnection Customers' request, a re-dispatch of existing generation within SPP was performed with respect to the amount of the Customers' injection.

For Variable Energy Resources (VER) (solar/wind) in each power flow case, Energy Resource Interconnection Service (ERIS), is evaluated for the generating plants within a geographical area of the interconnection request(s) for the VERs dispatched at 100% nameplate of maximum generation. The VERs in the remote areas is dispatched at 20% nameplate of maximum generation. These projects are dispatched across the SPP footprint using load factor ratios.

Peaking units are not dispatched in the 2017 spring and 2020 light, or in the "High VER" summer and winter peaks. To study peaking units' impacts, the 2016 winter peak, 2017 summer peak, and 2020 summer and winter peaks, models are developed with peaking units dispatched at 100% of the nameplate rating and VERs dispatched at 20% of the nameplate rating. Each interconnection request is also modeled separately at 100% nameplate for certain analyses.

All generators (VER and peaking) that requested Network Resource Interconnection Service (NRIS) are dispatched in an additional analysis into the interconnecting Transmission Owner's (T.O.) area at 100% nameplate with Energy Resource Interconnection Service (ERIS) only requests at 80% nameplate. This method allows for identification of network constraints that are common between regional groupings to have affecting requests share the mitigating upgrade costs throughout the cluster.

For this LOIS, only the previous queued requests listed in Table 1 were assumed to be in-service at 100% dispatch.

Study Methodology and Criteria

Network constraints are found by using PSS/E AC Contingency Calculation (ACCC) analysis with PSS/E MUST First Contingency Incremental Transfer Capability (FCITC) analysis on the entire cluster grouping dispatched at the various levels previously mentioned.

For Energy Resource Interconnection Service (ERIS), thermal overloads are determined for system intact (n-0) (greater than 100% of Rate A - normal) and for contingency (n-1) (greater than 100% of Rate B – emergency) conditions.

The overloads are then screened to determine which of generator interconnection requests have at least

- 3% Distribution Factor (DF) for system intact conditions (n-0),
- 20% DF upon outage based conditions (n-1),
- or 3% DF on contingent elements that resulted in a non-converged solution.

Interconnection Requests that requested Network Resource Interconnection Service (NRIS) are also studied in a separate NRIS analysis to determine if any constraint measured greater than or equal to a 3% DF. If so, these constraints are also considered for transmission reinforcement under NRIS.

The contingency set includes all SPP control area branches and ties 69kV and above, first tier Non-SPP control area branches and ties 115 kV and above, any defined contingencies for these control areas, and generation unit outages for the SPP control areas with SPP reserve share program redispatch.

The monitor elements include all SPP control area branches, ties, and buses 69 kV and above, and all first tier Non-SPP control area branches and ties 69 kV and above. NERC Power Transfer Distribution Flowgates for SPP and first tier Non-SPP control area are monitored. Additional NERC Flowgates are monitored in second tier or greater Non-SPP control areas. Voltage monitoring was performed for SPP control area buses 69 kV and above.

Results

The LOIS ACCC analysis indicates that the Affected System Interconnection Customer(s) can interconnect their generation into the SPS transmission system at the available MW listed in the results tables before all required upgrades listed within the DISIS-2014-002, DISIS-2015-001, DISIS-2015-002, or DISIS-2016-001 studies or latest iteration can be placed into service. Should any other

GI projects, other than those listed within Table 1 of this report, come into service an additional study may be required to determine if any limited operation service is available. ACCC results for the LOIS can be found in Table 4 and Table 5.

Table 4 results are based on the study assumption of system conditions as of 12/31/2016 prior to the in-service DISIS-2014-002 identified and assigned Network Upgrades. These Network Upgrade(s) include Tolk – Plant X 230kV circuit #1 and circuit #2 rebuilds, and TUCO 345/230/13kV transformer replacement.

Table 5 results are based on the study assumption if for any unforeseen reason the Network Upgrades, Tolk – Plant X 230kV circuit #1 and circuit #2 rebuilds, and TUCO 345/230/13kV transformer replacement are not in-service by their anticipated in-service date. This assumption also accounts for GEN-2013-027, GEN-2014-035, and GEN-2014-047 generation. If the Network Upgrade(s) are not in-service by 12/31/2020, then higher queued and equally queued generation could be limited further for LOIS.

Constraints listed in Table 6 do not require additional transmission reinforcement for Interconnection Service, but could require Interconnection Customer to reduce generation in operational conditions. These transmission constraints occur when this study's generation is dispatched into the SPP footprint for Energy Resource Interconnection Service (ERIS).

Curtailment and System Reliability

In no way does this study guarantee operation for all periods of time. It should be noted that although this study analyzed many of the most probable contingencies, it is not an all-inclusive list and cannot account for every operational situation. Because of this, it is likely that the Customer(s) may be required to reduce their generation output to **0 MW** under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Table 4: Interconnection Constraints for Mitigation of LOIS as of 12/31/2016

Dispatch Group	Season	Source	Flow	Monitored Element	RATEA (MVA)	RATEB (MVA)	TDF	TC% LOADING	Max MW Available	Contingency
06ALL	n/a	ASGI_16_01	n/a	n/a	n/a	n/a	n/a	n/a	2.5	n/a
06ALL	n/a	ASGI_16_02	n/a	n/a	n/a	n/a	n/a	n/a	0.35	n/a

Table 5: Interconnection Constraints for Mitigation of LOIS if DISIS-2014-002 Network Upgrade In-service is delayed and with GEN-2013-027,GEN-2014-035, and GEN-2014-047 generation

Dispatch Group	Season	Source	Flow	Monitored Element	RATEA (MVA)	RATEB (MVA)	TDF	TC% LOADING	Max MW Available	Contingency
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20L	ASGI_16_01	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.34822	107.6065	0	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20L	ASGI_16_01	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.34822	108.3773	0	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20WP	ASGI_16_01	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.3692	117.4583	0	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20WP	ASGI_16_01	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.3692	118.7455	0	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20L	ASGI_16_01	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.34822	107.6065	0	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20L	ASGI_16_01	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.34822	108.3773	0	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20WP	ASGI_16_01	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.3692	117.4583	0	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20WP	ASGI_16_01	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.3692	118.7455	0	TRANSFORMER CKT 2
				PLANT X STATION - TOLK STATION EAST 230KV					0	
06ALL	20SP	ASGI_16_02	TO->FROM	CKT 2	478	501.5	0.33612	99.2	0	PLANT X STATION - TOLK STATION WEST 230KV CKT 1
				PLANT X STATION - TOLK STATION EAST 230KV					0	
06ALL	20SP	ASGI_16_02	TO->FROM	CKT 2	478	501.5	0.33612	99.2	Ū	PLANT X STATION - TOLK STATION WEST 230KV CKT 1
				PLANT X STATION - TOLK STATION WEST					0	
06ALL	20SP	ASGI_16_02	TO->FROM	230KV CKT 1	478	502	0.33918	99.9	Ű	PLANT X STATION - TOLK STATION EAST 230KV CKT 2
				PLANT X STATION - TOLK STATION WEST					0	
06ALL	20SP	ASGI_16_02	TO->FROM	230KV CKT 1	478	502	0.33918	99.9	Ū	PLANT X STATION - TOLK STATION EAST 230KV CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20L	ASGI_16_02	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.24585	107.6065	Ū	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20L	ASGI_16_02	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.24585	108.3773	Ű	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20WP	ASGI_16_02	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.26689	118.7455	Ŭ	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20WP	ASGI_16_02	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.26689	117.4583	Ŭ	TRANSFORMER CKT 2

Dispatch Group	Season	Source	Flow	Monitored Element	RATEA (MVA)	RATEB (MVA)	TDF	TC% LOADING	Max MW Available	Contingency
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20L	ASGI_16_02	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.24585	107.6065	0	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20L	ASGI_16_02	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.24585	108.3773	0	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20WP	ASGI_16_02	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.26689	118.7455	0	TRANSFORMER CKT 2
				TUCO INTERCHANGE (GE M1022338)					0	TUCO INTERCHANGE (SIEM 8743066) 345/230/13.2KV
06ALL	20WP	ASGI_16_02	FROM->TO	345/230/13.2KV TRANSFORMER CKT 1	560	560	0.26689	117.4583	U	TRANSFORMER CKT 2

Table 6: Constraints that do not require additional Transmission Reinforcements LOIS as of 12/31/2016

Dispatch Group	Season	Source	Flow	Monitored Element	RATEA (MVA)	RATEB (MVA)	TDF	TC% LOADING	Contingency
				CASTRO COUNTY INTERCHANGE - NEWHART					
06ALL	16WP	ASGI_16_02	FROM->TO	115KV CKT 1	159.35	177.08	0.03755	98.5	P12:115:SPS:T04.1.DFSMTH.CASTRO
				CASTRO COUNTY INTERCHANGE - NEWHART					
06ALL	20WP	ASGI_16_02	FROM->TO	115KV CKT 1	159.35	177.08	0.03265	105.2337	P12:115:SPS:T04.1.DFSMTH.CASTRO
				CLEARWATER - GILL ENERGY CENTER WEST					
06ALL	16WP	ASGI_16_01	FROM->TO	138KV CKT 1	143	143	0.0319	97.6	DBL-G1524-WI
0.001	10110		FROM . TO	CLEARWATER - GILL ENERGY CENTER WEST	1.12	1.12	0 00000	07.6	
UBALL	16009	ASGI_16_02	FRUIVI->TU		143	143	0.03298	97.6	DBL-01524-WI
06411	176	ASGL 16 01	FROM->TO	138KV CKT 1	143	143	0 03176	106 833	DBI-G1524-WI
00/ ILL	1,0	7661_10_01		CLEARWATER - GILL ENERGY CENTER WEST	115	115	0.03170	100.035	
06ALL	17G	ASGI 16 01	FROM->TO	138KV CKT 1	143	143	0.03176	99.3	DBL-THIS-G15
				CLEARWATER - GILL ENERGY CENTER WEST					
06ALL	17G	ASGI_16_02	FROM->TO	138KV CKT 1	143	143	0.03283	99.3	DBL-THIS-G15
				CLEARWATER - GILL ENERGY CENTER WEST					
06ALL	17G	ASGI_16_02	FROM->TO	138KV CKT 1	143	143	0.03283	106.833	DBL-G1524-WI
06ALL	16WP	ASGI_16_02	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.03298	126.5544	DBL-THIS-G15
06ALL	16WP	ASGI_16_01	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.0319	126.5544	DBL-THIS-G15
06ALL	16WP	ASGI_16_01	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.0319	136.2343	DBL-G1524-WI
06ALL	16WP	ASGI_16_02	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.03298	136.2343	DBL-G1524-WI
06ALL	17G	ASGI_16_02	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.03283	139.9178	DBL-THIS-G15
06ALL	17G	ASGI_16_01	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.03176	149.6386	DBL-G1524-WI
06ALL	17G	ASGI_16_01	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.03176	139.9178	DBL-THIS-G15
06ALL	17G	ASGI_16_02	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.03283	149.6386	DBL-G1524-WI
06ALL	17SP	ASGI_16_01	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.03487	108.7263	DBL-THIS-G15
06ALL	17SP	ASGI_16_01	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.03487	119.21	DBL-G1524-WI
06ALL	17SP	ASGI_16_02	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.03606	108.7263	DBL-THIS-G15
06ALL	17SP	ASGI_16_02	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	110	110	0.03606	119.21	DBL-G1524-WI

Dispatch Group	Season	Source	Flow	Monitored Element	RATEA (MVA)	RATEB (MVA)	TDF	TC% LOADING	Contingency
				EDDY_NORTH 6230.00 (WAUK WT01134)					
06ALL	25SP	ASGI_16_02	FROM->TO	230/115/13.2KV TRANSFORMER CKT 2	248.9	286	0.06618	100.9919	EDDY COUNTY INTERCHANGE - EDDY_NORTH 6230.00 230KV CKT @1
				EDDY_NORTH 6230.00 (WAUK WT01134)					
06ALL	25SP	ASGI_16_02	FROM->TO	230/115/13.2KV TRANSFORMER CKT 2	248.9	286	0.06618	100.2006	EDDY COUNTY INTERCHANGE - EDDY_NORTH 6230.00 230KV CKT @1
				EDDY_NORTH 6230.00 (WAUK WT01134)					
06ALL	16WP	ASGI_16_02	FROM->TO	230/115/13.2KV TRANSFORMER CKT 2	273.8	311	0.04087	99.9	EDDY COUNTY INTERCHANGE - EDDY_NORTH 6230.00 230KV CKT @1
00011	1010			EDDY_NORTH 6230.00 (WAUK WT01134)	272.0	211	0.04007	100 2025	
UGALL	1600	ASGI_16_02	FROIVI->TO	230/115/13.2KV TRANSFORMER CKT 2	273.8	311	0.04087	100.3825	EDDY COUNTY INTERCHANGE - EDDY_NORTH 6230.00 230KV CKT @1
06411	1750	ASGL 16 02		220/115/12 2KV/TPANSEOPMED CKT 2	248.0	286	0 04227	07 /	
UUALL	1756	A301_10_02		EDDY NORTH 6230 00 (WALK WT01134)	240.5	200	0.04327	57.4	
06411	175P	ASGI 16 02	FROM->TO	230/115/13.2KV TRANSFORMER CKT 2	248.9	286	0.04327	96.6	EDDY COUNTY INTERCHANGE - EDDY NORTH 6230.00 230KV CKT @1
06411	201	ASGL 16.01	TO->FROM		133	153	0.03105	125 8563	
OGALL	201	ASGL 16_01			122	153	0.03105	107 65 47	
OGALL	201	ASGI_10_01			155	155	0.03103	107.0347	
UGALL	20L	ASGI_16_02	TO->FROM	FPL SWITCH - WOODWARD 138KV CKT 1	133	153	0.03184	107.6547	DBL-G1151-TG
06ALL	20L	ASGI_16_01	TO->FROM	FPL SWITCH - WOODWARD 138KV CKT 1	133	153	0.03105	106.4155	DBL-WWRD-G11
06ALL	20L	ASGI_16_02	TO->FROM	FPL SWITCH - WOODWARD 138KV CKT 1	133	153	0.03184	106.4155	DBL-WWRD-G11
06ALL	20L	ASGI_16_02	TO->FROM	FPL SWITCH - WOODWARD 138KV CKT 1	133	153	0.03184	125.8563	DBL-TGA-MATT
				GRAPEVINE INTERCHANGE - NICHOLS					
06ALL	20WP	ASGI_16_02	TO->FROM	STATION 230KV CKT 1	329.05	360.92	0.09768	96.3	DBL-TGA-MATT
00011	2014/5		TO . 50014	GRAPEVINE INTERCHANGE - NICHOLS	220.05	260.02	0 4 4 0 2	00.7	
UGALL	20WP	ASGI_16_01	TO->FROM		329.05	360.92	0.1182	99.7	G14-0741 345.00 - OKLAUNION 345KV CKT 1
06411	2014/0	ASGL 16 02		GRAPEVINE INTERCHANGE - NICHOLS	220.05	260.02	0 11012	100 2602	DBI BVP C111
UUALL	2000	A301_10_02		GRADEVINE INTERCHANGE - NICHOLS	329.03	300.92	0.11012	100.3003	
06411	20WP	ASGI 16 02	TO->FROM	STATION 230KV CKT 1	329.05	360.92	0 12547	99.7	G14-074T 345.00 - OKLAUNION 345KV CKT 1
00,122	2011	//001_10_02		GRAPEVINE INTERCHANGE - NICHOLS	323.03	300.52	0.125 17		
06ALL	20WP	ASGI 16 02	TO->FROM	STATION 230KV CKT 1	329.05	360.92	0.11012	102.0493	DBL-G1114-WW
				GRAPEVINE INTERCHANGE - NICHOLS					
06ALL	20WP	ASGI_16_01	TO->FROM	STATION 230KV CKT 1	329.05	360.92	0.09302	100.3603	DBL-BVR-G111
				GRAPEVINE INTERCHANGE - NICHOLS					
06ALL	20WP	ASGI_16_02	TO->FROM	STATION 230KV CKT 1	329.05	360.92	0.12547	99.8	G14-074T 345.00 - TUCO INTERCHANGE 345KV CKT 1
				GRAPEVINE INTERCHANGE - NICHOLS					
06ALL	20WP	ASGI_16_01	TO->FROM	STATION 230KV CKT 1	329.05	360.92	0.09302	102.0493	DBL-G1114-WW
0.000	2014/2			GRAPEVINE INTERCHANGE - NICHOLS			0.4400		
06ALL	20WP	ASGI_16_01	TO->FROM		329.05	360.92	0.1182	99.8	G14-0741 345.00 - TUCO INTERCHANGE 345KV CKT 1
06411	2014/0	ASCI 16 01		GRAPEVINE INTERCHANGE - NICHOLS	220.05	260.02	0.09462	06.2	DRI TCA MATT
UUALL	2000	A301_10_01		GRAPEVINE INTERCHANGE - NICHOLS	329.03	300.92	0.06403	50.5	
06411	201	ASGI 16 02	TO->FROM	STATION 230KV CKT 1	318.7	350.57	0.09672	95.5	DBI-G1114-WW
		1.0010_02		GRAPEVINE INTERCHANGE - NICHOLS	510.7	000.07	0.00072	55.5	
06ALL	20L	ASGI_16_01	TO->FROM	STATION 230KV CKT 1	318.7	350.57	0.07961	95.5	DBL-G1114-WW
06ALL	16WP	ASGI 16 01	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	143.4	143.4	0.0319	103.8211	DBL-THIS-G15
06ALL	16WP	ASGI 16 02	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	143.4	143.4	0.03298	103.8211	DBL-THIS-G15

Dispatch Group	Season	Source	Flow	Monitored Element	RATEA (MVA)	RATEB (MVA)	TDF	TC% LOADING	Contingency
06ALL	16WP	ASGI_16_01	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	143.4	143.4	0.0319	111.3075	DBL-G1524-WI
06ALL	16WP	ASGI_16_02	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	143.4	143.4	0.03298	111.3075	DBL-G1524-WI
06ALL	17G	ASGI_16_01	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	138.6	143.4	0.03176	122.7809	DBL-G1524-WI
06ALL	17G	ASGI_16_01	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	138.6	143.4	0.03176	115.2507	DBL-THIS-G15
06ALL	17G	ASGI_16_02	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	138.6	143.4	0.03283	122.7809	DBL-G1524-WI
06ALL	17G	ASGI_16_02	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	138.6	143.4	0.03283	115.2507	DBL-THIS-G15
06ALL	25SP	ASGI_16_01	FROM->TO	SUNDOWN INTERCHANGE (WH XDS70381) 230/115/13.8KV TRANSFORMER CKT 1	187	187	0.04346	100	TERRY COUNTY INTERCHANGE - WOLFFORTH INTERCHANGE 115KV CKT 1
06ALL	25SP	ASGI_16_01	FROM->TO	SUNDOWN INTERCHANGE (WH XDS70381) 230/115/13.8KV TRANSFORMER CKT 1	187	187	0.04346	96	TERRY COUNTY INTERCHANGE - WOLFFORTH INTERCHANGE 115KV CKT 1
06ALL	25SP	ASGI_16_01	FROM->TO	SUNDOWN INTERCHANGE (WH XDS70381) 230/115/13.8KV TRANSFORMER CKT 1	187	187	0.04346	100	TERRY COUNTY INTERCHANGE - WOLFFORTH INTERCHANGE 115KV CKT 1
06ALL	25SP	ASGI_16_01	FROM->TO	SUNDOWN INTERCHANGE (WH XDS70381) 230/115/13.8KV TRANSFORMER CKT 1	187	187	0.04346	96	TERRY COUNTY INTERCHANGE - WOLFFORTH INTERCHANGE 115KV CKT 1

Stability Analysis

Transient stability analysis was not performed for this LOIS study. The results will be included with the DISIS 2016-001 analysis posting.

Conclusion

<OMITTED TEXT> (Affected System Interconnection Customer) has requested an Affected System Limited Operation System Impact Study (AS-LOIS) under the Southwest Power Pool Open Access Transmission Tariff (OATT) for ASGI-2016-001 and ASGI-2016-002. ASGI-2016-001 (2.5MW) and ASGI-2016-002 (0.35MW) wind generating facilities are to be interconnected into the Distribution System of South Plains Electric Cooperative, Inc. (SPEC). The South Plains Electric Cooperative system is interconnecting to the Southwestern Public Power (SPS) in Lubbock County, Texas. ASGI-2016-001 and ASGI-2016-002 have requested this Limited Operation Interconnection Study (LOIS) to determine the impacts of interconnecting to the transmission system before all required Network Upgrades identified in the DISIS-2014-002, DISIS-2015-001, DISIS-2015-002, and potentially DISIS-2016-001 (or most recent iteration) Impact Study can be placed into service.

Power flow analysis from this Affected System LOIS has determined that the ASGI-2016-001 and ASGI-2016-002 request can interconnect 2.85 MW of generation with Energy Interconnection Resource Service (ERIS) prior to the completion of the required Network Upgrades, listed within Table 2 of this report, provided the Network Upgrades are able to be placed in service prior to December 31, 2020. Should any other projects, other than those listed within Table 1 of this report, come into service an additional study may be required to determine if any limited operation service is available. It should be noted that although this Affected System LOIS analyzed many of the most probable contingencies, it is not an all-inclusive list that can account for every operational situation. Additionally, the generator may not be able to inject any power onto the Transmission System due to constraints that fall below the threshold of mitigation for a Generator Interconnection request. Because of this, it is likely that the Customer(s) may be required to reduce their generation output to **0 MW** under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Transient stability and short circuit analysis was not performed for this LOIS study. Transient stability analysis will be conducted as part of the DISIS-2016-001 study.

Any changes to these assumptions, for example, one or more of the previously queued requests not included within this study execute an interconnection agreement and commencing commercial operation, may require a re-study of this LOIS at the expense of the Customer.

Nothing in this System Impact Study constitutes a request for transmission service or confers upon the Interconnection Customer any right to receive transmission service.