00

000

GEN-2015-063 Impact Restudy for Generator Modification (Turbine Change)

June 2017 Generator Interconnection

000

Revision History

Date	Author	Change Description
6/23/2017	SPP	GEN-2015-063 Impact Restudy for Generator Modification Report Issued
		SPS utbwest Power Pool
		O Southwest
		Power Pool
		0.0-0

Executive Summary

The GEN-2015-063 Interconnection Customer has requested a modification to its Generator Interconnection Request to change turbines. The previously studied project configuration consisted of One hundred fifty (150) Vestes V110 2.0 MW wind turbines for a total nameplate capacity of 300.0 MW. The proposed revised project configuration consists of ninety-five (95) Acciona 3.15 MW wind turbines for a total nameplate capacity of 299.25 MW. The point of interconnection (POI) is a new substation that taps the line between the Oklahoma Gas & Electric (OKGE) Woodring and Mathewson 345kV substations.

The study models used were the 2016 winter, 2017 summer, and 2025 summer models that included Interconnection Requests and assigned network upgrades through DISIS-2015-002-1.

Stability analysis has determined with all assigned Network Upgrades in service, generators in the monitored areas remained stable and within the pre-contingency, voltage recovery, and post fault voltage recovery criterion of 0.7pu to 1.2pu for the entire modeled disturbances. Additionally, the project was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

Power factor analysis for each generation project was performed on the current study 2016 winter peak, 2017 summer peak, and 2025 summer peak cases with identified system upgrades. As reactive power is required for GEN-2015-063, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the point of interconnection.

An analysis was conducted to determine the capacitive effects on the transmission system caused by the generator lead and collector system during periods of reduced generation. The generating facility is required to provide reactive compensation of approximately 15.2 Mvar of inductive reactance during periods of reduced generation. Such compensation can be provided either by discrete reactive devices or by the generator itself if it possesses that capability.

Short Circuit analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases.

With the assumptions outlined in this report and with all the required network upgrades from the DISIS-2015-002-1 in place, GEN-2015-063 with the Acciona 3.15 MW wind turbines should be able to interconnect reliably to the SPP transmission grid. This proposed change in wind turbines is not a Material Modification.

It should be noted that this study analyzed the requested modification to change turbine technology, manufacturer, and layout. Powerflow analysis was not performed. This study analyzed many of the most probable contingencies, but it is not an all-inclusive list and cannot account for every operational situation. It is likely that the customer may be required to reduce its generation output to 0 MW, also known as curtailment, under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Nothing in this study should be construed as a guarantee of delivery or transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

Table of Contents

Revisio	on History	1
Execut	tive Summary	i
Table o	of Contents	iii
1.	Introduction	1
2.	Facilities	4
3.	Stability Analysis	5
	Model Preparation	5
	Disturbances	5
	Results	9
	FERC LVRT Compliance	
4.	Power Factor Analysis	11
	Model Preparation	
	Disturbances	
	Results	
5.	Reduced Generation Analysis	12
6.	Short Circuit Analysis	
	Results	
7.	Conclusion	15
Appen	ndix A – 2016 Winter Peak Stability Plots	16
Appen	ndix B – 2017 Summer Peak Stability Plots	17
Appen	ndix C – 2025 Summer Peak Stability Plots	
Appen	ndix D – Power Factor Analysis Results	19
Appen	ndix E – Short Circuit Analysis Results	20

1. Introduction

The GEN-2015-063 Interconnection Customer has requested a modification to its Generator Interconnection Request to change PV solar inverters from Vestas V110 2.0 MW wind turbines to Acciona 3.15 MW wind turbines.

The requested change is shown in **Table 1-1**.

Table 1-1: Interconnection Request

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2015- 063	299.25	Acciona 3.15 MW wind turbines	Tap on Woodring (514715) to Matthewson (515497) 345 kV (560055)

The POI is a new substation that taps the line between the Oklahoma Gas & Electric (OKGE) Woodring and Mathewson 345kV substations. Other queued generation projects in the model are listed in **Table 1-2**.

Request	Capacity (MW)	Generator Model	Point of Interconnection
ASGI-2010-006	150	GE 1.5MW	Remington 138kV (301369)
ASGI-2014-014	54.3 Summer 56.4 Winter	GENSAL	Ferguson 69kV (512664)
ASGI-2015-004	54.3 Summer 56.364 Winter	GENSAL	Coffeyville Municipal Light & Power Northern Industrial Park Substation 69kV (512735)
GEN-2002-004	199.5	GE 1.5MW	Lathams 345kV (532800)
GEN-2005-013	199.8	Vestas V90 1.8MW	Caney River 345kV (532780)
GEN-2007-025	299.2	GE 1.6MW	Viola 345kV (532798)
GEN-2008-013	300	GE 1.68MW, and GE 2.4MW	Hunter 345kV (515476)
GEN-2008-021	1261 Summer 1283 Winter	GENROU	Wolf Creek 345kV (532797)
GEN-2008-098	100.3	Gamesa 2.0MW, and Gamesa 2.1MW	Waverly 345kV (532799)
GEN-2009-025	59.8	Siemens 2.3MW	Nardins 69kV (515528)
GEN-2010-003 (Phase II to GEN-2008-098)	98.7	Gamesa 2.1MW	Waverly 345kV (532799)
GEN-2010-005	299.2	GE 1.6MW, and Vestas V110 2.0MW	Viola 345kV (532798)
GEN-2010-055	4.8	GENROU	Wekiwa 138kV (509757)
GEN-2011-057	150	Vestas V110 2.0MW	Creswell 138kV (532981)
GEN-2012-032	299	Siemens 2.3MW	Open Sky 345kV (515621)
GEN-2012-033	98.055	GE 1.715MW, and GE 1.79MW	Breckenridge 138kV (514815)
GEN-2012-041	85.3 Summer 121.5 Winter	GENROU	Ranch Road 345kV (515576)
GEN-2013-012 (Uprate to Redbud station)	68 Summer 147 Winter (uprate) (4 x 168 Summer 4 x 215 Winter)	GENROU (514910) (514911) (514912) (514942)	Redbud 345kV (514909)

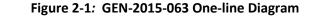
Table 1-2: Other Queued Interconnection Requests in the Model

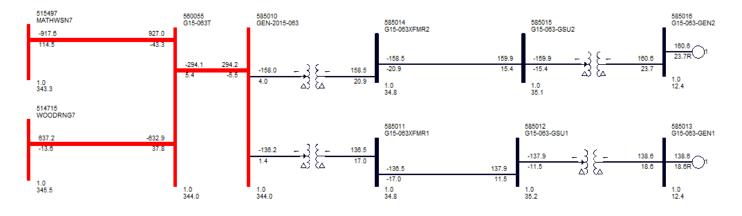
Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2013-028	516.4 Summer 559.5 Winter	GENROU (583743, 583746)	Tap on Tulsa N to GRDA1 345kV (512865)
GEN-2013-029	299	Siemens 2.3MW	Renfrow 345kV (515543)
GEN-2014-001	199.5	Gamesa 2.1MW	Tap Wichita to Emporia Energy Center 345kV (562476)
GEN-2014-028 (Uprate to GEN- 2004-017)	35 (uprate) (256 summer 259 winter)	GENROU	Riverton 161kV (547469)
GEN-2014-064	248.4	GE 2.3MW	Otter 138kV (514708)
GEN-2015-001	199.8	Vestas V126 3.3MW, and Vestas V126 3.0MW	Ranch Road 345kV (515576)
GEN-2015-015	154.56	Siemens 2.415MW	Tap Medford Tap to Coyote 138kV (560031)
GEN-2015-016	200.0	Vestas V110 2.0MW	Tap Centerville to Marmaton 161kV (560029)
GEN-2015-024	217.8	GE 1.8MW	Tap Thistle to Wichita 345kV, ckt1&2 (560033)
GEN-2015-025	215.95	GE 1.8MW, and GE 1.79MW	Tap Thistle to Wichita 345kV, ckt1&2 (560033)
GEN-2015-030	200.1	GE 2.3MW	Sooner 345kV (514803)
GEN-2015-034	200	Vestas V110 2.0MW	Ranch Road 345kV (515576)
GEN-2015-052	300	Vestas V110 2.0MW	Tap Open Sky to Rose Hill 345 kV (560053)
GEN-2015-062 (Uprate to GEN- 2012-033)	4.505	GE 1.8MW (uprated 53 GE 1.715MW)	Breckenridge 138kV (514815)
GEN-2015-066	248.4	GE 2.3MW	Tap Cleveland to Sooner 345 kV (560056)
GEN-2015-067	150	Power Electronics – 1.667MW PV inverter	Sooner 138kV (514802)
GEN-2015-069	300	Vestas V110 2.0MW	Union Ridge 230kV (532874)
GEN-2015-073	200.1	Siemens 2.3MW	Emporia 345kV (532768)
GEN-2015-083	124.2	GE 2.3MW	Belle Plain 138kV (533063)
GEN-2015-090	220	GE 2.0MW	Tap Wichita to Thistle 345kV at GEN- 2015-024 (584660) 345kV

A stability analysis was performed for the change in wind turbines. The analysis was performed on three (3) seasonal models including 2016 winter peak (16WP), the 2017 summer peak (17SP), and the 2025 summer peak (25SP) cases. These cases are modified versions of the 2015 model series of Model Development Working Group (MDWG) dynamic study models that included upgrades and Interconnection Requests through DISIS-2015-002-1.

Stability Analysis determines the impacts of the new interconnecting project on the stability and voltage recovery of the nearby systems and the ability of the interconnecting project to meet FERC Order 661A. If problems with stability or voltage recovery are identified, the need for reactive compensation or system upgrades is investigated. The contingencies listed in **Table 3-1** were used in the stability analysis.

Power Factor Analysis determines the power factor at the point of interconnection (POI) for the interconnection projects for pre-contingency and post-contingency conditions. The contingencies used in the power factor analysis are a subset of the stability analysis contingencies shown in **Table 3-1**.


Reduced Generation Analysis was performed to determine reactor inductive amounts to compensate for the capacitive effects on the transmission system caused by the interconnecting project's generator lead transmission line and collector systems during low or reduced generation conditions. The results of the analysis are illustrated in **Figure 5-2**.


Short Circuit Analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases. The results from the Short circuit analysis are shown in **Appendix E**.

Nothing in this System Impact Study constitutes a request for transmission service or grants the Interconnection Customer any rights to transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

2. Facilities

A one-line PSS/E slider drawing from the 16WP case is shown in **Figure 2-1** for GEN-2015-063. The POI is a tap on the OKGE Woodring – Mathewson 345kV transmission line.

3. Stability Analysis

Transient stability analysis is used to determine if the transmission system can maintain angular stability and ensure bus voltages stay within planning criteria bandwidth during and after a disturbance while considering the addition of a generator interconnection request.

Model Preparation

Transient stability analysis was performed using modified versions of the 2015 series of Model Development Working Group (MDWG) dynamic study models including the 2016 winter peak, 2017 summer peak, and the 2025 summer peak seasonal models. The cases are then loaded with prior queued interconnection requests and network upgrades assigned to those interconnection requests through DISIS-2015-002-1. Finally the prior queued and study generation are dispatched into the SPP footprint. Initial simulations are then carried out for a no-disturbance run of twenty (20) seconds to verify the numerical stability of the model.

Disturbances

Twenty-four (24) contingencies were identified for use in this study and are listed in **Table 3-1**. These contingencies are faults at locations defined by SPP Generation Interconnection Staff. These contingencies include three-phase and single-phase N-1. Single-phase line faults were simulated by applying fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP current practice.

Except for transformer faults, the typical sequence of events for a three-phase and single-phase fault is as follows:

- 1. apply fault at particular location
- 2. continue fault for five (5) cycles, clear the fault by tripping the faulted facility
- 3. after an additional twenty (20) cycles, re-close the previous facility back into the fault
- 4. continue fault for five (5) additional cycles
- 5. trip the faulted facility and remove the fault

Transformer faults are typically modeled as three-phase faults, unless otherwise noted. The sequence of events for a transformer fault is as follows:

- 1. apply fault for five (5) cycles
- 2. clear the fault by tripping the affected transformer facility (unless otherwise noted there will be no reclosing into a transformer fault)

The SPP areas monitored during the stability analysis were:

- 520: American Electric Power (AEPW)
- 523: Grand River Dam Authority (GRDA)
- 524: Oklahoma Gas and Electric Company (OKGE)
- 525: Western Farmers Electric Cooperative (WFEC)
- 527: Oklahoma Municipal Power Authority (OMPA)

Southwest Power Pool, Inc.

- 534: Sunflower Electric Power Corp. (SUNC)
- 536: Westar Energy, Inc. (WERE)

Table 3-1: Contingencies Evaluated

Cont. No.	Contingency Name	Description
0	FLT_000_NOFAULT	No Fault Conditions
1	FLT_01_SOONER7_G16061TAP_345kV_3PH	 3 phase fault on the Sooner (5514803) to GEN-2016-061-TAP (560084) 345kV line, near Sooner. a. Apply fault at the Sooner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line and islanded generation. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
2	FLT_02_G16061TAP_WOODRNG7_345kV_3PH	 3 phase fault on the GEN-2016-061-TAP (560084) to Woodring (514715) 345kV line, near GEN-2016-061-TAP. a. Apply fault at the GEN-2016-061-TAP 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line and islanded generation. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
3	FLT_03_WOODRNG7_G15063T_345kV_3PH	 3 phase fault on the Woodring (514715) to GEN-2015-063-TAP (560055) 345kV line, near Woodring. a. Apply fault at the Woodring 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line and islanded generation. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
4	FLT_04_WOODRNG7_HUNTERS7_345kV_3PH	 3 phase fault on the Woodring (514715) to Hunters (515476) 345kV line, near Woodring. a. Apply fault at the Woodring 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line and islanded generation. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
5	FLT_05_G15063T_MATHWSN7_345kV_3PH	 3 phase fault on the GEN-2015-063-TAP (560055) to Matthewson (515497) 345kV line, near GEN-2015-063T. a. Apply fault at the GEN-2015-063T 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line and islanded generation. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-1: Contingencies Evaluate	ed
-----------------------------------	----

Cont. No.	Contingency Name	Description
6	FLT_06_G15063T_WOODRNG7_345kV_3PH	 3 phase fault on the GEN-2015-063-TAP (560055) to Woodring (514715) 345kV line, near GEN-2015-063-TAP. a. Apply fault at the GEN-2015-063-TAP 345kV bus b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
7	FLT_07_MATHWSN7_CIMARON7_345kV_3PH	 3 phase fault on the Mathewson (515497) to Cimarron (514901) 3455kV line, near Mathewson. a. Apply fault at the Mathewson 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
8	FLT_08_G15052T_ROSEHIL7_345kV_3PH	 3 phase fault on the GEN-2015-052-TAP (560053) to Rosehill (532794) 345kV line, near GEN-2015-052-TAP. a. Apply fault at the GEN-2015-052-TAP 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
9	FLT_09_VIOLA7_WICHITA7_345kV_3PH	 3 phase fault on the Viola (532798) to Wichita (532796) 345kV line, near Viola. a. Apply fault at the Viola 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
10	FLT_10_SOONER7_SPRNGCK7_345kV_3PH	 3 phase fault on the Sooner (5514803) to Spring Creek (5514881) 345kV line, near Sooner. a. Apply fault at the Sooner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line and islanded generation. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
11	FLT_11_MINCO7_GRACMNT7_345kV_3PH	 3 phase fault on the Minco (514801) to Gracemont (515800) 345kV line, near Minco. a. Apply fault at the Minco 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
12	FLT_12_G15081TAP_WWRDEHV7_345kV_3PH	 3 phase fault on the G15-081-Tap (562075) to Woodward EHV (515375) 345kV line, near G15-081-Tap. a. Apply fault at the G15-081-Tap 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-1:	Contingencies Evaluated
------------	--------------------------------

Cont. No.	Contingency Name	Description
13	FLT_13_MATHWSN7_NORTWST7_345kV_3PH	 3 phase fault on the Mathewson (515497) to Northwest (514880) 345kV line, near Mathewson. a. Apply fault at the Mathewson 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
14	FLT_14_NORTWST7_ARCADIA7_345kV_3PH	 3 phase fault on the Northwest (514880) to Arcadia (514908) 345kV line, near Northwest. a. Apply fault at the Northwest 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
15	FLT_15_CIMARON7_DRAPER7_345kV_3PH	 3 phase fault on the Cimarron (514901) to Draper (514934) 345kV line, near Cimarron. a. Apply fault at the Cimarron 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
16	FLT_16_SOONER7_G16061TAPSB_345kV_1PH	 Single phase fault with stuck breaker on the Sooner (514803) to GEN-2016-061-TAP (560084) 345kV line, near Sooner. a. Apply fault at the Sooner 345kV bus. b. Clear fault after 16 cycles by tripping the faulted line as well as the line from Sooner (514803) to Ranch Road (515576).
17	FLT_17_WOODRNG7_G16061TAPSB_345kV_1PH	 Single phase fault with stuck breaker on Woodring (514715) to GEN-2016-061-TAP (560084) 345kV line, near GEN-2016-061-TAP. a. Apply fault at the Woodring 345 kV bus. b. Clear fault after 16 cycles by tripping the faulted line as well as the line from Woodring (514715) to Hunter (515476).
18	FLT_18_WOODRNG7_WOODRNG4_345_138kV_3PH	 3 phase fault on the Woodring 345kV (514715) to 138 kV (514714) to 13.8 kV (515770) XFMR CKT 1, near Woodring 345 kV bus. a. Apply fault at the Woodring 345 kV bus. b. Clear fault after 5 cycles by tripping the transformer
19	FLT_19_NORTWST7_NORTWST4_345_138kV_3PH	 3 phase fault on the Northwest 345kV (514880) to 138 kV (514879) to 13.8 kV (514885) XFMR CKT 1, near Northwest 345 kV bus. a. Apply fault at the Northwest 345 kV bus. b. Clear fault after 5 cycles by tripping the transformer
20	FLT_20_CIMARON7_CIMARON4_345_138kV_3PH	 3 phase fault on the Cimarron 345kV (514901) to 138 kV (514898) to 13.8 kV (515715) XFMR CKT 1, near Cimarron 345 kV bus. a. Apply fault at the Cimarron 345 kV bus. b. Clear fault after 5 cycles by tripping the transformer

Cont. No.	Contingency Name	Description
21	FLT_21_MATHWSN7_CIMARON7PO_345kV_3PH	 Prior outage on the Mathewson (515497) to Northwest (514880) 345kV line: 3 phase fault on the Mathewson (515497) to Cimarron (514901) 345kV line, near Mathewson 345kV. a. Prior Outage Mathewson to Northwest 345kV. b. Apply fault at the Mathewson 345kV bus. c. Clear fault after 5 cycles by tripping the faulted line. d. Wait 20 cycles, and then re-close the line in (b) back into the fault. e. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
22	FLT_22_WOODRNG7_G16061TAPPO_345kV_3PH	 Prior outage on the G15-063T (560055) to Mathewson (515497) 345kV line: 3 phase fault on the Woodring (514715) to G16-061-Tap (560084) 345kV line, near Woodring 345kV. a. Prior Outage G15-063T to Mathewson 345kV. b. Apply fault at the Woodring 345kV bus. c. Clear fault after 5 cycles by tripping the faulted line. d. Wait 20 cycles, and then re-close the line in (b) back into the fault. e. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
23	FLT_23_WOODRNG7_HUNTERS7PO_345kV_3PH	 Prior outage on the G15-063T (560055) to Mathewson (515497) 345kV line: 3 phase fault on the Woodring (514715) to Hunters (515476) 345kV line, near Woodring 345kV. a. Prior Outage G15-063T to Mathewson 345kV. b. Apply fault at the Woodring 345kV bus. c. Clear fault after 5 cycles by tripping the faulted line. d. Wait 20 cycles, and then re-close the line in (b) back into the fault. e. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
24	FLT_24_MATHWSN7_CIMARON7PO_345kV_3PH	 Prior outage on the G15-063T (560055) to Woodring (514715) 345kV line: 3 phase fault on the Mathewson (515497) to Cimarron (514901) 345kV line, near Mathewson 345kV. a. Prior Outage G15-063T to Woodring 345kV. b. Apply fault at the Mathewson 345kV bus. c. Clear fault after 5 cycles by tripping the faulted line. d. Wait 20 cycles, and then re-close the line in (b) back into the fault. e. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Results

The stability analysis was performed and the results are summarized in *Table 3-2*. The stability plots will be available upon customer request.

		Three Phase			
	Contingency Number and Name	2016WP	2017SP	2025SP	
0	FLT_000_NOFAULT	STABLE	STABLE	STABLE	
1	FLT_01_SOONER7_G16061TAP_345kV	STABLE	STABLE	STABLE	
2	FLT_02_G16061TAP_WOODRNG7_345kV	STABLE	STABLE	STABLE	
3	FLT_03_WOODRNG7_G15063T_345kV	STABLE	STABLE	STABLE	
4	FLT_04_WOODRNG7_HUNTERS7_345kV	STABLE	STABLE	STABLE	
5	FLT_05_G15063T_MATHWSN7_345kV	STABLE	STABLE	STABLE	
6	FLT_06_G15063T_WOODRNG7_345kV	STABLE	STABLE	STABLE	
7	FLT_07_MATHWSN7_CIMARON7_345kV	STABLE	STABLE	STABLE	
8	FLT_08_G15052T_ROSEHIL7_345kV	STABLE	STABLE	STABLE	
9	FLT_09_VIOLA7_WICHITA7_345kV	STABLE	STABLE	STABLE	
10	FLT_10_SOONER7_SPRNGCK7_345kV	STABLE	STABLE	STABLE	
11	FLT_11_MINCO7_GRACMNT7_345kV	STABLE	STABLE	STABLE	
12	FLT_12_G15081TAP_WWRDEHV7_345kV	STABLE	STABLE	STABLE	
13	FLT_13_MATHWSN7_NORTWST7_345kV	STABLE	STABLE	STABLE	
14	FLT_14_NORTWST7_ARCADIA7_345kV	STABLE	STABLE	STABLE	
15	FLT_15_CIMARON7_DRAPER7_345kV	STABLE	STABLE	STABLE	
16	FLT_16_SOONER7_G16061TAPSB_345kV**	STABLE	STABLE	STABLE	
17	FLT_17_WOODRNG7_G16061TAPSB_345kV **	STABLE	STABLE	STABLE	
18	FLT_18_WOODRNG7_WOODRNG4_345_138kV	STABLE	STABLE	STABLE	
19	FLT_19_NORTWST7_NORTWST4_345_138kV	STABLE	STABLE	STABLE	
20	FLT_20_CIMARON7_CIMARON4_345_138kV	STABLE	STABLE	STABLE	
21	FLT_21_MATHWSN7_CIMARON7PO_345kV	STABLE	STABLE	STABLE	
22	FLT_22_WOODRNG7_G16061TAPPO_345kV	STABLE	STABLE	STABLE	
23	FLT_23_WOODRNG7_HUNTERS7PO_345kV	STABLE	STABLE	STABLE	
24	FLT_24_MATHWSN7_CIMARON7PO_345kV	STABLE	STABLE	STABLE	

Table 3-2: Contingency Results

**indicates a single phase contingency

FERC LVRT Compliance

FERC Order 661A places specific requirements on wind farms through its Low Voltage Ride Through (LVRT) provisions. For Interconnection Agreements signed after December 31, 2006, wind farms shall stay on line for faults at the POI that draw the voltage down at the POI to 0.0 pu. The faults listed below in **Table 3-3** were tested to meet Order 661A LVRT provisions. GEN-2015-063 was found to be in compliance with FERC Order 661A

Contingency Name	Description
FLT_05_G15063T_MATHWSN_345kV	 Fault on the GEN-2015-063-TAP (560055) to Mathewson (515497) 345kV line, near GEN-2015-063-TAP. a. Apply fault at the GEN-2015-063-TAP 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line and islanded generation. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
FLT_06_G15063T_WOODRNG7_345kV	 Fault on the GEN-2015-063-TAP (560055) to Woodring (514715) 345kV line, near G15-063T. a. Apply fault at the GEN-2015-063-TAP 345kV bus b. Clear fault after 5 cycles by tripping the faulted line and islanded generation. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-3 LVRT Contingencies

4. Power Factor Analysis

The power factor analysis was performed for each project included in this study and is designed to demonstrate the reactive power requirements at the point of interconnection (POI) using the current study upgrade cases. For all projects that require reactive power, the final requirement in the GIA will be the proforma 95% lagging to 95% leading at the POI.

Model Preparation

For each project included in this study, as well as previous queued projects modeled at the same POI, the projects were turned off for the power factor analysis. The projects were replaced by an equivalent generator located at the POI producing the total MW of the projects at that POI and 0.0 Mvar capability.

A Mvar generator without limits was modeled at the interconnection project POI to hold a voltage schedule at the POI consistent with the greater of the voltage schedule in the base case or unity (1.0 pu) voltage.

Disturbances

Each N-1 contingency evaluated in the Stability Analysis found in **Table 3-1** was also included in the determination of the power factor requirements.

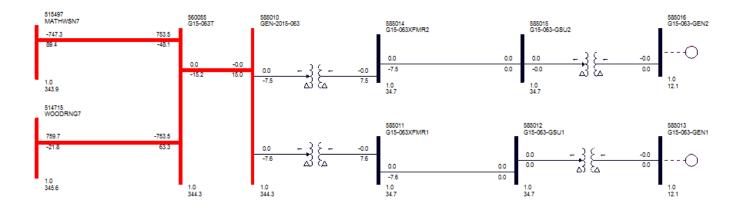
Results

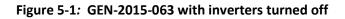
The power factor ranges are summarized in **Table 4-1** and the resultant ranges are shown **Table D-1**. The analysis showed that reactive power is required for the study project, the final requirement in the Generation Interconnection Agreement (GIA) for each project will be the pro-forma 95% lagging to 95% leading at the POI.

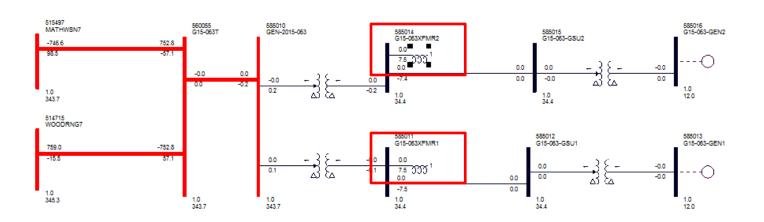
For analyzing power factor results a positive Q (Mvar) output indicates that the equivalent generator is supplying reactive power to the system, implying a lagging power factor. A negative Q (Mvar) output indicates that the equivalent generator is absorbing reactive power from the system, implying a leading power factor.

Request	Capacity (MW)	Point of Interconnection (POI)	Fuel	Generator	Lagging (providing Mvars)	Leading (absorbing Mvars)
GEN-2015-063	299.25	Tap on Woodring (514715) to Matthewson (515497) 345 kV (560055)	Wind	Acciona 3.15 MW wind turbines	0.95	0.95

Table 4-1: Summary of Power Factor Analysis at the POI


NOTE: As reactive power is required for the project, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the point of interconnection.


5. Reduced Generation Analysis


A low generation analysis was performed for GEN-2015-063 to determine the capacitive charging current injected at the POI from the generation facility.

The project inverters and capacitors (if any) were turned off in the study case. **Figure 5-1** shows the resulting reactive power injection (approximately 15.2 Mvar) at the POI that is due to the capacitance of the projects' 34.5 kV collector system transmission lines and of the transmission lead that connects the 345/34.5 kV transformer to the POI.

A shunt reactor was added at the GEN-2015-063 project substation 34.5 kV bus to bring the Mvar flow into the POI down to approximately zero as shown in **Figure 5-2**. A reactor of approximately 7.6 (15.2 total) Mvar installed on the low side of both 345/34.5 kV transformers will negate the capacitive effect of the project at the POI.

Figure 5-2: GEN-2015-063 with inverters turned off and 15.2Mvar reactor at 34.5kV buses

6. Short Circuit Analysis

The short circuit analysis was performed on the 2017 & 2025 Summer Peak power flow cases using the PSS/E ASCC program. Since the power flow model does not contain negative and zero sequence data, only three-phase symmetrical fault current levels were calculated at the point of interconnection up to and including five levels away.

Short Circuit Analysis was conducting using flat conditions with the following PSS/E ASCCC program settings:

- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFORMER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

Results

The results of the short circuit analysis are shown in **Appendix E**; 2017 summer peak results in **Table** *E***-1** and 2025 summer peak results in **Table** *E***-2**.

7. Conclusion

The GEN-2015-063 Interconnection Customer has requested a modification to its Generator Interconnection Request to change turbines. The proposed revised project configuration consists of ninety-five (95) Acciona 3.15 MW wind turbine generators for a total nameplate capacity of 299.25 MW. The point of interconnection (POI) is a new substation that taps the line between the Oklahoma Gas & Electric (OKGE) Woodring and Mathewson 345kV substations.

Stability analysis has determined that with all previously assigned Network Upgrades in service, generators in the monitored areas remained stable and within the pre-contingency, voltage recovery, and post fault voltage recovery criterion of 0.7pu to 1.2pu for the entire modeled disturbances. Additionally, the project was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

A power factor analysis was performed for the modification request. As reactive power is required for GEN-2015-063, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the POI.

An analysis was conducted to determine the capacitive effects on the transmission system caused by the generator lead and collector system during periods of reduced generation. The generating facility is required to provide reactive compensation of approximately 15.2 Mvar of inductive reactance during periods of reduced generation. Such compensation can be provided either by discrete reactive devices or by the generator itself if it possesses that capability.

Short Circuit analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases.

With the assumptions outlined in this report and with all the required network upgrades from the DISIS 2015-002 in place, GEN-2015-063 with the Acciona 3.15 MW wind turbines should be able to interconnect reliably to the SPP transmission grid. This proposed change in wind turbines is not a Material Modification.

It should be noted that this study analyzed the requested modification to change generator technology, manufacturer, and layout. Powerflow analysis was not performed. This study analyzed many of the most probable contingencies, but it is not an all-inclusive list and cannot account for every operational situation. It is likely that the customer may be required to reduce its generation output to 0 MW, also known as curtailment, under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Nothing in this study should be construed as a guarantee of delivery or transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

Appendix A – 2016 Winter Peak Stability Plots

(Available on request)

Appendix B – 2017 Summer Peak Stability Plots

(Available on request)

Appendix C – 2025 Summer Peak Stability Plots

(Available on request)

Appendix D – Power Factor Analysis Results

Table D-1: GEN-2015-063 Power Factor Analysis Results

	Leading power factor is absorbing vars; Lagging power factor is providing vars									
	GEN-2015-063 POI: G15-063T 345 kV (560055) Power at POI (MW): 299.25	2016 Winter Peak POI Voltage = 1.000 pu			2017 Summer Peak POI Voltage = 1.002 pu			2025 Summer Peak POI Voltage = 1.002 pu		
	Contingency Name	Mvars at POI	Power Facto		Mvars at POI	Powerl	actor	Mvars at POI	Power F	actor
0	FLT_000_NOFAULT				-				0.99741	
1	FLT_01_SOONER7_G16061TAP_345kV	-1.21222	0.996624	LAG LEAD	21.3034 - 39.6338	0.997476	LEAD	-21.5676	3 0.98938 9	LEAD
2	FLT_02_G16061TAP_WOODRNG7_345kV	8.843079	0.999564	LAG	-29.53	0.995166	LEAD	-33.9099	0.99364	LEAD
3	FLT_03_WOODRNG7_G15063T_345kV	-6.19546	0.999786	LEAD	- 38.1622	0.991966	LEAD	-44.8162	0.98897 1	LEAD
4	FLT_04_WOODRNG7_HUNTERS7_345kV	12.01102	0.999195	LAG	- 30.0961	0.994981	LEAD	-26.7472	0.99602 9	LEAD
5	FLT_05_G15063T_MATHWSN7_345kV	-24.0919	0.996775	LEAD	- 34.2286	0.993522	LEAD	-30.1345	0.99496 8	LEAD
6	FLT_06_G15063T_WOODRNG7_345kV	-6.19546	0.999786	LEAD	- 38.1622	0.991966	LEAD	-44.8162	0.98897	LEAD
7	FLT_07_MATHWSN7_CIMARON7_345kV FLT_08_G15052T_ROSEHIL7_345kV	28.29643	0.995559	LAG	- 16.8721 54.8266	0.998414	LEAD	-19.6661 60.4723	0.99784 8 0.98018	LEAD
8	111_08_0130321_10311111_34384	100.2358	0.94822	LAG	54.8200	0.983627	LAG	3	0.98018	LAG
9	FLT_09_VIOLA7_WICHITA7_345kV	135.4263	0.911049	LAG	84.8182	0.962101	LAG	9.95092 7	0.99944 8	LAG
11	FLT_10_SOONER7_SPRNGCK7_345kV	118.8594	0.929374	LAG	56.1036 2	0.982876	LAG	53.7161 9	0.98426 9	LAG
12	FLT_11_MINCO7_GRACMNT7_345kV	38.09072	0.991996	LAG	- 13.3133	0.999012	LEAD	-14.8271	0.99877 5	LEAD
13	FLT_12_G15081TAP_WWRDEHV7_345kV	26.04634	0.996234	LAG	- 27.6207	0.995767	LEAD	-22.5972	0.99716 1	LEAD
14	FLT_13_MATHWSN7_NORTWST7_345kV	-6.94569	0.999731	LEAD	-45.397	0.988688	LEAD	-46.2635	0.98826	LEAD
15	FLT_14_NORTWST7_ARCADIA7_345kV	42.7047	0.98997	LAG	10.7437	0.999356	LEAD	-10.5081	0.99938 4	LEAD
16	FLT_15_CIMARON7_DRAPER7_345kV	17.54405	0.998286	LAG	- 18.9716	0.997996	LEAD	-23.4079	0.99695 5	LEAD
17	FLT_16_SOONER7_G16061TAPSB_345kV	-1.21222	0.999992	LEAD	- 39.6338	0.991343	LEAD	-43.9444	0.98938	LEAD
18	FLT_17_WOODRNG7_G16061TAPSB_345kV **	8.843079	0.999564	LAG	-29.53	0.995166	LEAD	-33.9099	0.99364 1	LEAD
19	FLT_17_G16061TAP_WOODRNG7SB_345kV**	38.2422	0.991933	LAG	- 13.5052	0.998983	LEAD	-17.974	0.99820 1	LEAD
20	FLT_18_WOODRNG7_WOODRNG4_345_138kV	15.10444	0.998729	LAG	- 27.6619	0.995755	LEAD	-27.2484	0.99588	LEAD
21	FLT_19_NORTWST7_NORTWST4_345_138kV	4.263728	0.999899	LAG	- 36.3156	0.992717	LEAD	-35.3281	0.99310 3	LEAD
22	FLT_21_MATHWSN7_CIMARON7PO_345kV	28.29643	0.995559	LAG	- 16.8721	0.998414	LEAD	-19.6661	0.99784 8	LEAD
23	FLT_22_WOODRNG7_G16061TAPPO_345kV	8.843079	0.999564	LAG	-29.53	0.995166	LEAD	-33.9099	0.99364 1	LEAD
24	FLT_23_WOODRNG7_HUNTERS7PO_345kV	12.01102	0.999195	LAG	30.0961	0.994981	LEAD	-26.7472	0.99602	LEAD
25	FLT_24_MATHWSN7_CIMARON7PO_345kV	28.29643	0.995559	LAG	- 16.8721	0.998414	LEAD	-19.6661	0.99784 8	LEAD

Appendix E – Short Circuit Analysis Results

Table E-1: GEN-2015-063 Short Circuit Analysis Results (2017SP)

PSS®E-32.2.0 ASCC SHORT CIRCUIT CURRENTS T 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 17S WITH MMWG 15S, MRO 16W TOPO/16S PROF, SERC 16S

THU, MAY 25 2017 13:54

OPTIONS USED:

- FLAT CONDITIONS
- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

		THREE PHAS	F FAULT
XX		/I+/	AN(I+)
560055 [G15-063T 345.00]	AMP	16758.2	-84.89
514715 [WOODRNG7 345.00]	AMP	16949.4	-84.81
515497 [MATHWSN7 345.00]	AMP	27519.6	-85.77
585010 [GEN-2015-063345.00]	AMP	16486.1	-84.83
514714 [WOODRNG4 138.00]	AMP	18631.1	-83.29
514880 [NORTWST7 345.00]	AMP	29354.9	-86.04
514901 [CIMARON7 345.00]	AMP	29712.3	-85.76
515407 [TATONGA7 345.00]	AMP	10482.6	-86.78
515476 [HUNTERS7 345.00]	AMP	12083.1	-84.69
560084 [G16-061-TAP 345.00]	AMP	14720.8	-84.89
514708 [OTTER 4 138.00]	AMP	9520.9	-82.41
514709 [FRMNTAP4 138.00]	AMP	17455.7	-82.87
514711 [WAUKOTP4 138.00]	AMP	14931.0	-81.71
514733 [MARSHL 4 138.00]	AMP	7784.1	-80.53
514801 [MINCO 7 345.00]	AMP	16166.3	-85.15
514803 [SOONER 7 345.00]	AMP	24626.9	-86.49
514879 [NORTWST4 138.00]	AMP	42442.3	-85.92
514881 [SPRNGCK7 345.00]	AMP	21411.9	-85.53
514898 [CIMARON4 138.00]	AMP	42021.6	-84.99
514908 [ARCADIA7 345.00]	AMP	24884.0	-86.46
514934 [DRAPER 7 345.00]	AMP	20389.5	-85.14
515448 [CRSRDSW7 345.00]	AMP	8151.6	-85.99
515477 [CHSHLMV7 345.00]	AMP	12067.1	-84.69
515543 [RENFROW7 345.00]	AMP	11221.8	-84.65
515582 [SLNGWND7 345.00]	AMP	7041.9	-85.75
515585 [MAMTHPW7 345.00]	AMP	9281.9	-86.61
515610 [FSHRTAP7 345.00]	AMP	15917.9	-85.09
562075 [G15-081-TAP 345.00]	AMP	11376.1	-86.55
584700 [GEN-2015-029345.00]	AMP	7355.3	-85.26
511425 [TUTCONT4 138.00]	AMP	10456.4	-80.80
514710 [WAUKOMI4 138.00]	AMP	9516.1	-80.46
514712 [FAIRMON4 138.00]	AMP	13634.3	-82.23
514713 [WRVALLY4 138.00]	AMP	8658.7	-82.14
514731 [SO4TH 4 138.00]	AMP	14807.1	-81.22
514802 [SOONER 4 138.00]	AMP	31412.8	-86.77
514819 [EL-RENO4 138.00]	AMP	15218.5	-80.01
514820 [JENSENT4 138.00]	AMP	14995.6	-79.44
514828 [KETCHTP4 138.00]	AMP	26013.7	-84.55
514854 [BRADEN 4 138.00]	AMP	30755.1	-85.14
514863 [HAYMAKR4 138.00]	AMP	26007.1	-82.45

514873	[LNEOAK 4	138.00]	AMP	26423.8	-84.56
514894	[CZECHAL4	138.00]	AMP	28013.6	-82.98
514895	SARA 4	138.00]	AMP	18582.2	-84.09
514907	[ARCADIA4	138.00]	AMP	40842.7	-85.63
	[REDBUD 7	345.00]		23853.8	-86.78
514909	-	-	AMP		
514933	[DRAPER 4	138.00]	AMP	38576.3	-85.17
515045	[SEMINOL7	345.00]	AMP	25941.6	-86.18
515375	[WWRDEHV7	345.00]	AMP	16733.1	-86.05
515444	MCNOWND7	345.00]	AMP	16121.3	-85.14
515471	[NW164TH4	138.00]	AMP	34845.1	-85.66
	[RENFROW4	138.00]			
515544	-	-	AMP	13396.0	-84.84
515549	[MNCWND37	345.00]	AMP	11273.6	-84.89
515576	[RANCHRD7	345.00]	AMP	13873.8	-86.68
515600	[KNGFSHR7	345.00]	AMP	11007.2	-84.89
515605	CANADN7	345.00]	AMP	11348.6	-84.82
515800	GRACMNT7	345.00]	AMP	14766.5	-85.23
521006	[MARSHAL4	138.00]	AMP	7747.8	-80.47
	-	-			
532798	[VIOLA 7	345.00]	AMP	11410.8	-85.09
560056	[G15-066T	345.00]	AMP	17997.7	-86.55
560077	[G16-032-TAP	345.00]	AMP	3367.1	-79.62
579272	[G0744&1403H	v345.001	AMP	7041.9	-85.75
583750	[GEN-2013-029	-	AMP	10000.4	-84.60
584170	[GEN-2014-064	-	AMP	9448.8	-82.38
	-	-			
584690	[GEN-2015-03	-	AMP	18751.5	-85.92
584880	[GEN-2015-04]	-	AMP	11012.3	-83.66
585180	[GEN-2015-08]	1345.00]	AMP	10013.5	-86.19
509782	[R.S.S7	345.00]	AMP	30823.8	-86.91
510907	PITTSB-7	345.00]	AMP	13067.7	-84.54
511424	T-CONCO4	138.00]	AMP	6824.2	-74.78
		-			
511468	[L.E.S7	345.00]	AMP	12027.4	-84.69
511501	[TUTTLE4	138.00]	AMP	10332.5	-80.76
512694	[CLEVLND7	345.00]	AMP	14858.6	-86.35
514704	[MILLERT4	138.00]	AMP	20178.7	-85.57
514706	COWCRK 4	138.00]	AMP	11245.7	-82.98
514707	PERRY 4	138.00]	AMP	10947.5	-83.28
514730	[S04TH 2	69.000]	AMP	13548.6	-82.36
	-	-			
514774	[HENESEY4	138.00]	AMP	7312.3	-79.09
514790	[IMO 4	138.00]	AMP	11621.4	-80.85
514798	[SNRPMPT4	138.00]	AMP	20202.3	-85.53
514815	[BRECKNR4	138.00]	AMP	13481.1	-80.99
514818	ELRENO 2	69.000]	AMP	7202.2	-78.40
514821	JENSEN 4	138.00]	AMP	10527.7	-79.40
	-	-			-74.29
514823	[ROMNOSE4	138.00]	AMP	4121.1	
514827	[CTNWOOD4	138.00]	AMP	16556.1	-80.43
514834	[KETCH 4	138.00]	AMP	26479.3	-84.56
514851	[QUAILCK4	138.00]	AMP	28916.7	-83.27
514852	[SLVRLAK4	138.00]	AMP	32141.3	-83.89
514853	DVISION4	138.00]	AMP	35475.9	-83.30
514864	[PIEDMNT4	138.00]	AMP	22045.6	-84.44
514893	[XEROX 4	138.00]	AMP	29368.7	-82.99
	-	-			
514906	[JNSKAMO4	138.00]	AMP	20536.4	-81.91
514946	[MIDWEST4	138.00]	AMP	29740.6	-83.52
514949	[SOONRTP4	138.00]	AMP	20104.9	-82.40
514961	[GM 4	138.00]	AMP	19119.4	-84.12
515003	BARNES 4	138.00]	AMP	15819.7	-83.17
515044	SEMINOL4	138.00]	AMP	39196.8	-85.70
515224	[MUSKOGE7	345.00]		28789.9	-86.76
		-			
515376	[WWRDEHV4	138.00]	AMP	22229.8	-86.07
515447	[MORISNT4	138.00]	AMP	13669.7	-82.93
515458	[BORDER	7345.00]	AMP	4957.4	-86.22
515461	[RNDBARN4	138.00]	AMP	38851.6	-85.56
515465	LGARBER4	138.00]	AMP	21023.9	-82.40
515466	[MITCHSB4	138.00]	AMP	21067.2	-83.35
515481	STHLAKE4	138.00]	AMP	20609.0	-84.63
717401		100.00]	AUT	20009.0	-04.05

515546	[GRANTCO4	138.00]	AMP	6232.4	-81.17
515569	[MDFRDTP4	138.00]	AMP	10856.1	-83.45
515599	[G07621119-20	0345.00]	AMP	11915.1	-85.61
515621	OPENSKY7	345.00]	AMP	12829.7	-86.64
515641	PLNSMEN4	138.00]	AMP	13493.1	-82.03
515802	GRACMNT4	138.00]	AMP	25655.3	-84.71
520409	RENFROW4	138.00]	AMP	9943.6	-83.13
521100	WARREN 4	138.00]	AMP	8658.7	-82.14
529200	OMCDLEC7	345.00]	AMP	13848.0	-86.67
532792	FR2EAST7	345.00]	AMP	6214.4	-85.59
532796	WICHITA7	345.00]	AMP	23729.1	-86.11
539801	[THISTLE7	345.00]	AMP	15230.0	-85.87
560071	[G16-003-TAP	345.00]	AMP	13437.1	-86.21
560078	G16-037-TAP	345.00]	AMP	6658.5	-84.68
584060	GEN-2014-056	5345.00]	AMP	8330.2	-84.94
584450	[G1501-G1631	345.00]	AMP	11137.5	-85.62
584770		4345.00]	AMP	11813.2	-86.26
585040	GEN-2015-06	5345.00]	AMP	17832.5	-86.52
585050		7138.00]	AMP	21836.6	-86.20
585270		3345.00]	AMP	9040.0	-84.98
		-			

Table E-2: GEN-2015-063 Short Circuit Analysis Results (2025SP)

PSS®E-32.2.0 ASCC SHORT CIRCUIT CURRENTS FRI, APR 21 2017 12:06 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 2025S WITH MMWG 2024S, MRO & SERC 2025 SUMMER

OPTIONS USED:

- FLAT CONDITIONS
- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

			THREE PHAS	E FAULT
X BUS	X		/I+/	AN(I+)
560055 [G15-063T	345.00]	AMP	17187.6	-84.94
514715 [WOODRNG7	345.00]	AMP	17263.9	-84.84
515497 [MATHWSN7	345.00]	AMP	29649.5	-86.08
585010 GEN-2015-06	3345.00	AMP	16900.9	-84.88
514714 WOODRNG4	138.00]	AMP	18740.5	-83.29
514880 [NORTWST7	345.00]	AMP	30512.5	-86.09
514901 [CIMARON7	345.00]	AMP	31107.0	-85.95
515407 TATONGA7	345.00	AMP	15927.3	-86.55
515476 [HUNTERS7	345.00]	AMP	12401.6	-84.74
560084 G16-061-TAP	345.00	AMP	14848.7	-84.90
514708 OTTER 4	138.00]	AMP	9545.6	-82.40
514709 FRMNTAP4	138.00]	AMP	17552.6	-82.87
514711 WAUKOTP4	138.00]	AMP	15007.6	-81.72
514733 [MARSHL 4	138.00]	AMP	7799.0	-80.53
514801 MINCO 7	345.00]	AMP	16528.1	-85.20
514803 SOONER 7	345.00]	AMP	24736.6	-86.50
514879 [NORTWST4	138.00]	AMP	42918.6	-85.97
514881 SPRNGCK7	345.00]	AMP	21898.2	-85.53
514898 [CIMARON4	138.00]	AMP	42418.1	-85.06
514908 [ARCADIA7	345.00]	AMP	26061.8	-86.55
514934 [DRAPER 7	345.00]	AMP	20528.4	-85.12
515448 CRSRDSW7	345.00]	AMP	11102.1	-85.54
515477 [CHSHLMV7	345.00]	AMP	12384.7	-84.74
515582 [SLNGWND7	345.00]	AMP	8983.0	-85.26
515585 [MAMTHPW7	345.00]	AMP	13252.8	-86.34
515610 [FSHRTAP7	345.00]	AMP	16265.2	-85.15
560086 [G16-072-TAP	345.00]	AMP	11617.8	-84.72
562075 [G15-081-TAP	345.00]	AMP	16228.5	-86.40
584700 [GEN-2015-029	-	AMP	9602.6	-84.60
511425 [TUTCONT4	138.00]	AMP	10672.1	-80.90
514710 [WAUKOMI4	138.00]	AMP	9561.4	-80.48
514712 [FAIRMON4	138.00]	AMP	13696.6	-82.22
514713 [WRVALLY4	138.00]	AMP	8688.7	-82.12
514731 [SO4TH 4	138.00]	AMP	14878.3	-81.21
514802 [SOONER 4	138.00]	AMP	31801.4	-86.81
514819 [EL-RENO4	138.00]	AMP	15286.4	-80.04
514820 [JENSENT4	138.00]	AMP	15063.0	-79.45
514828 [KETCHTP4	138.00]	AMP	26059.7	-84.56
514854 [BRADEN 4	138.00]	AMP	30925.7	-85.16
514863 [HAYMAKR4	138.00]	AMP	26068.5	-82.47
514873 [LNEOAK 4	138.00]	AMP	26551.6	-84.59
514894 [CZECHAL4	138.00]	AMP	27695.8	-83.00
514895 [SARA 4	138.00]	AMP	18617.7	-83.00
514907 [ARCADIA4	138.00]	AMP	41260.3	-85.71
514909 [REDBUD 7	345.00]	AMP	25382.5	-86.83
	J+J.00]	<i>P</i> 1111	23302.3	00.05

514933	[DRAPER 4	138.00]	AMP	38601.5	-85.15
515045	[SEMINOL7	345.00]	AMP	26073.8	-86.15
515375	[WWRDEHV7	345.00]	AMP	19023.4	-86.12
515444	[MCNOWND7	345.00]	AMP	16481.0	-85.19
515471	[NW164TH4	138.00]	AMP	35149.5	-85.70
515543	RENFROW7	345.00]	AMP	11781.6	-84.77
515549	[MNCWND37	345.00]	AMP	11439.7	-84.91
515576	RANCHRD7	345.00]	AMP	13769.1	-86.67
515600	KNGFSHR7	345.00]	AMP	11157.9	-84.92
515800	GRACMNT7	345.00]	AMP	15204.9	-85.32
521006	[MARSHAL4	138.00]	AMP	7762.6	-80.47
560056	G15-066T	345.00]	AMP	18044.6	-86.54
560077		345.00	AMP	3372.5	-79.62
562790	G15-038T	345.00]	AMP	13470.7	-84.97
579272	G0744&1403H	/345.00]	AMP	8983.0	-85.26
584170	[GEN-2014-064	138.00]	AMP	9473.0	-82.37
584690	[GEN-2015-030	345.00	AMP	18814.4	-85.92
584880	[GEN-2015-047	345.00]	AMP	11522.4	-83.75
585180	[GEN-2015-081	345.00]	AMP	13489.7	-85.91
509782	[R.S.S7	345.00]	AMP	31488.9	-86.99
510907	PITTSB-7	345.00]	AMP	13084.4	-84.54
511424	T-CONCO4	138.00]	AMP	6915.7	-74.76
511468	[L.E.S7	345.00]	AMP	12316.5	-84.70
511501	TUTTLE4	138.00]	AMP	10566.7	-80.87
512694	CLEVLND7	345.00]	AMP	14881.4	-86.33
514704	[MILLERT4	138.00]	AMP	20414.1	-85.61
514706	COWCRK 4	138.00]	AMP	11309.5	-82.96
514707	[PERRY 4	138.00]	AMP	11005.8	-83.26
514730	[SO4TH 2	69.000]	AMP	13578.1	-82.36
514774	[HENESEY4	138.00]	AMP	7367.3	-79.16
514790	[IMO 4	138.00]	AMP	11661.7	-80.84
514798	[SNRPMPT4	138.00]	AMP	20461.4	-85.59
514815	[BRECKNR4	138.00]	AMP	13544.6	-80.97
514818	[ELRENO 2	69.000]	AMP	7312.9	-78.44
514821	[JENSEN 4	138.00]	AMP	10568.5	-79.39
514823	[ROMNOSE4	138.00]	AMP	4123.3	-74.29
514827	[CTNWOOD4	138.00]	AMP	16601.6	-80.44
514834	[КЕТСН 4	138.00]	AMP	26518.5	-84.57
514851	[QUAILCK4	138.00]	AMP	28975.2	-83.27
514852	[SLVRLAK4	138.00]	AMP	32241.8	-83.91
514853	[DVISION4	138.00]	AMP	35481.9	-83.33
514864	[PIEDMNT4	138.00]	AMP	22136.2	-84.46
514893	[XEROX 4	138.00]	AMP	28892.3	-83.00
514906	[JNSKAMO4	138.00]	AMP	20324.3	-81.88
514946	[MIDWEST4	138.00]	AMP	29776.4	-83.49
514949	SOONRTP4	138.00]	AMP	20110.1	-82.38
514961	[GM 4	138.00]	AMP	19051.2	-84.10
515003	[BARNES 4	138.00]	AMP	15717.5	-83.16
515044	-	138.00]	AMP	39220.4	-85.67
515224	[MUSKOGE7	345.00]	AMP	28887.3	-86.76
515376	[WWRDEHV4	138.00]	AMP	23252.1	-86.23
515447	[MORISNT4	138.00]	AMP	13863.2	-82.89
515458	-	'345.00]	AMP	5079.0	-86.22
515461	[RNDBARN4	138.00]	AMP	39221.0	-85.63
515465	[LGARBER4	138.00]	AMP	20996.8	-82.39
515466	[MITCHSB4	138.00]	AMP	21100.5	-83.35
515481	[STHLAKE4	138.00]	AMP	20608.6	-84.62
515544	[RENFROW4	138.00]	AMP	13592.8	-84.90
515599	[G07621119-20	-	AMP	12892.0	-85.58
515605	CANADN7	345.00]	AMP	11519.3	-84.86
515621	OPENSKY7	345.00]	AMP	12781.3	-86.64
515641	[PLNSMEN4	138.00]		13554.6	-82.02
515802	GRACMNT4	138.00]		27928.0	-84.83
521100	[WARREN 4	138.00]	AMP	8688.7	-82.12

529200	[OMCDLEC7	345.00]	AMP	13743.6	-86.67
532798	VIOLA 7	345.00]	AMP	13264.1	-85.50
539801	[THISTLE7	345.00]	AMP	15582.8	-85.89
560071	[G16-003-TAP	345.00]	AMP	14429.0	-86.25
560078	[G16-037-TAP	345.00]	AMP	6725.9	-84.70
583750	[GEN-2013-029	9345.00]	AMP	10436.2	-84.71
584060	[GEN-2014-056	5345.00]	AMP	8416.7	-84.95
584450	[G1501-G1631	345.00]	AMP	11072.0	-85.63
584770	[GEN-2015-034	4345.00]	AMP	11060.0	-85.68
585040	[GEN-2015-066	5345.00]	AMP	17878.4	-86.52
585050	[GEN-2015-067	7138.00]	AMP	22023.7	-86.22
585270	[GEN-2015-093	3345.00]	AMP	9195.9	-85.02