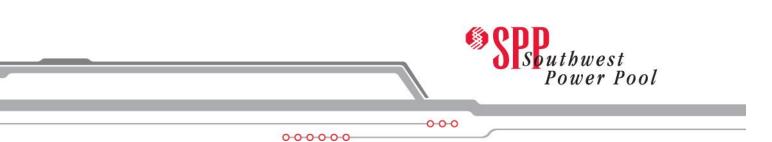

0-0-0

000


GEN-2014-020 Impact Restudy for Generator Modification (Turbine Change)

October 2017 Generator Interconnection

Revision History

Date	Author	Change Description	
3/20/2017	SPP	GEN-2014-020 Impact Restudy for Generator Modification Report Issued	
3/22/2017	SPP	GEN-2014-020 Impact Restudy for Generator Modification Report reposted for the POI change	
6/13/2017	SPP GEN-2014-020 PSSE stability model changed from Gamesa GD0803 to Gamesa GD0810 for improved frequency response. One-lines updated reflect equivalent Gamesa 2.0 MW and 2.1 MW wind turbine generator with associated GSU's on separate busses.		
10/17/2017	SPP	One-line drawing in Figure 5-1 was not visible in the previous version. Made visible in this version.	

Executive Summary

The GEN-2014-020 Interconnection Customer has requested a modification to its Generator Interconnection Request to change wind turbine generators for its project. Originally, it consisted of fifty (50) Vestas V110 VCSS 2.0MW wind turbines for a total of 100.0 MW. The requested change is for seventeen (17) Gamesa G114 2.0MW wind turbines and thirty-one (31) Gamesa G114 2.1MW wind turbines for a total of 99.1 MW. The point of interconnection (POI) is the new American Electric Power West (AEPW) Leonard 138kV Substation.

The study models used were the 2016 winter, 2017 summer, and 2025 summer models that included Interconnection Requests through DISIS-2015-002.

The restudy showed that the stability analysis has determined with all previously assigned Network Upgrades in service, generators in the monitored areas remained stable and within the pre-contingency, voltage recovery, and post fault voltage recovery criterion of 0.7pu to 1.2pu for the entire modeled disturbances. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

Power factor analysis for each generation project was performed on the current study 2016 winter peak, 2017 summer peak, and 2025 summer peak cases with identified system upgrades. As reactive power is required for GEN-2014-020, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the point of interconnection.

An analysis was conducted to determine the capacitive effects on the transmission system caused by the generator lead and collector system during periods of reduced generation. To offset these effects, the generating facility is required to provide reactive compensation of approximately 6 MVAR of inductive reactance during periods of reduced generation. Such compensation can be provided either by discrete reactive devices or by the generator itself if it possesses that capability.

Short Circuit analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases.

With the assumptions outlined in this report and with all the required network upgrades from the DISIS 2015-002 in place, GEN-2014-020 with the Gamesa G114 2.0MW and Gamesa G114 2.1MW wind turbine generators should be able to interconnect reliably to the SPP transmission grid. The change in wind turbine generator is not a Material Modification.

It should be noted that this study analyzed the requested modification to change generator technology, manufacturer, and layout. Powerflow analysis was not performed. This study analyzed many of the most probable contingencies, but it is not an all-inclusive list and cannot account for every operational situation. It is likely that the customer may be required to reduce its generation output to 0 MW, also known as curtailment, under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Nothing in this study should be construed as a guarantee of delivery or transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

Table of Contents

Revisio	on History	y1	
Execut	tive Sumn	naryi	
Table o	of Conten	ntsiii	
1.	Introduc	ction1	
2.	Facilities	s 3	
3.	Stability	Analysis	
	Mode	l Preparation	4
	Distur	bances	4
	Result	ts	7
	FERC L	LVRT Compliance	8
4.	Power Fa	actor Analysis 10	
	Mode	l Preparation	10
	Distur	bances	10
	Result	ts	10
5.	Reduced	d Wind Generation Analysis 11	
6.	Short Cir	rcuit Analysis	
	Result	ts	13
7.	Conclusi	ion 14	
Appen	dix A	– 2016 Winter Peak Stability Plots 15	
Appen	dix B	– 2017 Summer Peak Stability Plots 16	
Appen	dix C	– 2025 Summer Peak Stability Plots 17	
Appen	dix D	– Power Factor Analysis Results	
Appen	dix E	- Reduced Wind Generation Analysis Results 19	
Appen	dix F	– Short Circuit Analysis Results 20	

1. Introduction

The GEN-2014-020 Interconnection Customer has requested a modification to its Generator Interconnection Request to change its generators from Vestas V110 VCSS 2.0 MW wind turbines to Gamesa G114 2.0 MW and Gamesa G114 2.1 MW wind turbines. Originally, it consisted of fifty (50) Vestas V110 VCSS 2.0MW wind turbines for a total 100.0 MW. The requested change is shown in **Table 1-1**.

Table 1-1: Interconnection Request

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2014-020	99.1	17 x Gamesa G114 2.0MW = 34.0MW, and 31 x Gamesa G114 2.1MW = 65.1MW	Leonard 138kV (561000)

The POI is the new AEPW Leonard 138kV Substation. Other queued generation projects in the model are listed in **Table 1-2**.

		-	
Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2001-014	94.5	Suzlon S88 2.1MW	Ft Supply 138kV (520920)
GEN-2001-037	102	GE 1.5MW	FPL Mooreland Tap 138kV (515785)
GEN-2005-008	120	GE 1.5MW	Woodward 138kV (514785)
GEN-2006-024S	18.9	Suzlon S88 2.1MW	Buffalo Bear Tap 69kV (521120)
GEN-2006-046	130	Mitsubishi MWT95 2.4MW	Dewey 138kV (514787)
GEN-2007-021	200	GE 1.79MW	Tatonga 345kV (515407)
GEN-2007-043	200	GE 1.6MW	Minco 345KV (514801)
GEN-2007-044	300	GE 1.79MW	Tatonga 345kV (515407)
GEN-2007-050	170.2	Siemens 2.3MW	Woodward EHV 138kV (515376)
GEN-2007-062	425	Vestas V100 2.0MW (63) Vestas V117 3.3MW (30) GE 2.4MW (83)	Woodward EHV 345kV (515375)
GEN-2008-003	101.2	Siemens 2.3MW	Woodward EHV 138kV (515376)
GEN-2008-044	197.8	Siemens 2.3MW (86)	Tatonga 345kV (515407)
GEN-2010-011 (addition to GEN- 2008-044)	29.7	Siemens 2.3MW (9) Siemens 3.0MW (3)	Tatonga 345kV (515407)
GEN-2010-040	300	Mitsubishi MWT102 2.4MW (62) Repower MM92 2.05MW (73)	Cimarron 345kV (514901)
GEN-2011-010	100.8	GE 1.69MW	Minco 345KV (514801)
GEN-2011-019	175	Vestas V100 2.0MW (87)	Woodward EHV 345kV (515375)
GEN-2011-020	165	GE 2.4MW (69)	Woodward EHV 345kV (515375)
GEN-2011-054	300	Vestas V100 2.0MW	Cimarron 345kV (514901)
GEN-2014-002 (uprate to GEN- 2007-021)	10.53	GE 1.79MW	Tatonga 345kV (515407)
GEN-2014-003 (uprate to GEN- 2007-044)	15.04	GE 1.79MW	Tatonga 345kV (515407)

Table 1-2: Other Queued Interconnection Requests in the Model

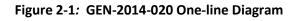
Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2014-005 (uprate to GEN- 2011-010)	5.67	GE 1.69MW	Tap Wichita to Emporia Energy Center 345kV (562476)
GEN-2014-056	250	GE 2.0MW	Minco 345KV (514801)
GEN-2015-029	161	GE 2.3MW	Tatonga 345kV (515407)
GEN-2015-048	200	Vestas V110 2.0MW	Cleo Corner 138kV (514778)
GEN-2015-057	100	GE 2.0MW	Minco 345KV (514801)
GEN-2015-060	250.5	GE 1.5MW	Woodward EHV 138kV (515376)
GEN-2015-081	180	Vestas V110 2.0MW	Tap Woodward to Tatonga 345kV (562075)
GEN-2015-093	250	GE 2.0MW	Gracemont 345kV (515800)

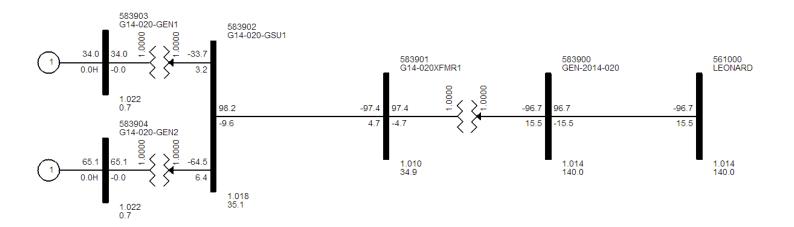
Table 1-2: Other Queued Interconnection Requests in the Model

A stability analysis was performed for the change in wind turbines. The analysis was performed on three (3) seasonal models including 2016 winter peak (16WP), the 2017 summer peak (17SP), and the 2025 summer peak (25SP) cases. These cases are modified versions of the 2015 model series of Model Development Working Group (MDWG) dynamic study models that included upgrades and Interconnection Requests through DISIS-2015-002.

The stability analysis determines the impacts of the new interconnecting project on the stability and voltage recovery of the nearby systems and the ability of the interconnecting project to meet FERC Order 661A. If problems with stability or voltage recovery are identified, the need for reactive compensation or system upgrades is investigated. The contingencies listed in **Table 3-1** were used in the stability analysis.

The power factor analysis determines the power factor at the point of interconnection (POI) for the wind interconnection projects for pre-contingency and post-contingency conditions. The contingencies used in the power factor analysis are a subset of the stability analysis contingencies shown in **Table 3-1**.


A reduced (low wind/no wind) generation analysis was performed to determine reactor inductive amounts to compensate for the capacitive effects on the transmission system caused by the interconnecting project's generator lead transmission line and collector systems during low or reduced wind conditions.


Short Circuit analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases. The results from the Short circuit analysis are shown in Appendix F.

Nothing in this System Impact Study constitutes a request for transmission service or grants the Interconnection Customer any rights to transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

2. Facilities

A one-line PSS/E slider drawing from the 16WP case is shown in **Figure 2-1** for GEN-2014-020. The POI is the new AEPW Leonard 138kV substation.

3. Stability Analysis

Transient stability analysis is used to determine if the transmission system can maintain angular stability and ensure bus voltages stay within planning criteria bandwidth during and after a disturbance while considering the addition of a generator interconnection request.

Model Preparation

Transient stability analysis was performed using modified versions of the 2015 series of Model Development Working Group (MDWG) dynamic study models including the 2016 winter peak, 2017 summer peak, and the 2025 summer peak seasonal models. The cases are then loaded with prior queued interconnection requests and network upgrades assigned to those interconnection requests. Finally the prior queued and study generation are dispatched into the SPP footprint. Initial simulations are then carried out for a no-disturbance run of twenty (20) seconds to verify the numerical stability of the model.

Disturbances

Twenty-five (25) contingencies were identified for use in this study and are listed in **Table 3-1**. These contingencies are faults at locations defined by SPP Generation Interconnection Staff. These contingencies include three-phase and single-phase N-1. Single-phase line faults were simulated by applying fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP current practice.

Except for transformer faults, the typical sequence of events for a three-phase and single-phase fault is as follows:

- 1. apply fault at particular location
- 2. continue fault for five (5) cycles, clear the fault by tripping the faulted facility
- 3. after an additional twenty (20) cycles, re-close the previous facility back into the fault
- 4. continue fault for five (5) additional cycles
- 5. trip the faulted facility and remove the fault

Transformer faults are typically modeled as three-phase faults, unless otherwise noted. The sequence of events for a transformer fault is as follows:

- 1. apply fault for five (5) cycles
- 2. clear the fault by tripping the affected transformer facility (unless otherwise noted there will be no reclosing into a transformer fault)

The SPP areas monitored during the stability analysis were:

- 520: American Electric Power (AEPW)
- 524: Oklahoma Gas and Electric Company (OKGE)
- 525: Western Farmers Electric Cooperative (WFEC)
- 527: Oklahoma Municipal Power Authority (OMPA)

Cont. No.	Contingency Name	Description
0	FLT_000_NOFAULT	No Fault Conditions
1	FLT_01_LEONARD_TUTTLE4_138kV_3PH	 3 phase fault on the Leonard (561000) to Tuttle (511501) 138kV line, near Leonard. a. Apply fault at the Leonard 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
2	FLT_02_ LEONARD _CORNVIL4_138kV_3PH	 3 phase fault on the Leonard (561000) to Cornville (511449) 138kV line, near Leonard. a. Apply fault at the Leonard 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
3	FLT_03_TUTTLE4_TUTCONT4_138kV_3PH	 3 phase fault on the Tuttle (511501) to Tuttle Conoco Tap (511425) 138kV line, near Tuttle. a. Apply fault at the Tuttle 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
4	FLT_04_CORNVIL4_NORGE4_138kV_3PH	 3 phase fault on the Cornville (511449) to Norge (511483) 138kV line, near Cornville. a. Apply fault at the Cornville 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
5	FLT_05_CORNVIL4_SANTAFE4_138kV_3PH	 3 phase fault on the Cornville (511449) to Santa Fe (511492) 138kV line, near Cornville. a. Apply fault at the Cornville 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
6	FLT_06_CORNVIL4_N29CHIK4_138kV_3PH	 3 phase fault on the Cornville (511449) to N29Chik (511502) 138kV line, near Cornville. a. Apply fault at the Cornville 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
7	FLT_07_CORNVIL4_BLANCHD4_138kV_3PH	 3 phase fault on the Cornville (511449) to Blanchard (511508) 138kV line, near Cornville. a. Apply fault at the Cornville 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
8	FLT_08_CORNVIL4_CORNTP4_138kV_3PH	 3 phase fault on the Cornville (511449) to Cornville Tap (520867) 138kV line, near Cornville. a. Apply fault at the Cornville 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
9	FLT_09_TUTCONT4_CIMARON4_138kV_3PH	 3 phase fault on the Tuttle Conoco Tap (511425) to Cimarron (514898) 138kV line, near Tuttle Conoco Tap. a. Apply fault at the Tuttle Conoco Tap 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Cont. No.	Contingency Name	Description
10	FLT_10_CIMARON4_ELRENO4_138kV_3PH	 3 phase fault on the Cimarron (514898) to El Reno (514819) 138kV line, near Cimarron. a. Apply fault at the Cimarron 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
11	FLT_11_CIMARON4_JENSENT4_138kV_3PH	 3 phase fault on the Cimarron (514898) to Jensen Tap (514820) 138kV line, near Cimarron. a. Apply fault at the Cimarron 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
12	FLT_12_CIMARON4_HAYMAKR4_138kV_3PH	 3 phase fault on the Cimarron (514898) to Haymaker (514863) 138kV line, near Cimarron. a. Apply fault at the Cimarron 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
13	FLT_13_CIMARON4_CZECHAL4_138kV_3PH	 3 phase fault on the Cimarron (514898) to Czech Hall (514894) 138kV line, near Cimarron. a. Apply fault at the Cimarron 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
14	FLT_14_CIMARON4_SARA4_138kV_3PH	 3 phase fault on the Cimarron (514898) to Sara (514895) 138kV line, near Cimarron. a. Apply fault at the Cimarron 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
15	FLT_15_CORNTP4_SEQUOYAHJ4_138kV_3PH	 3 phase fault on the Cornville Tap (520867) to Sequoyah Junction (520422) 138kV line, near Cornville Tap. a. Apply fault at the Cornville Tap 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
16	FLT_16_CORNTP4_NAPLESTP_138kV_3PH	 3 phase fault on the Cornville Tap (520867) to Naples Tap (520510) 138kV line, near Cornville Tap. a. Apply fault at the Cornville Tap 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
17	FLT_17_LES7_OKU7SB_345kV_1PH	 Single phase fault with stuck breaker on the LES (511468) to OKU (511456) 345kV line, near LES. a. Apply fault at the LES 345kV bus. b. Clear fault after 16 cycles by tripping the faulted line.
18	FLT_18_CIMARON4_CZECHAL4SB_138kV_1PH	 Single phase fault with stuck breaker on the Cimarron (514898) to Czech Hall (514894) 138kV line, near Cimarron. a. Apply fault at the Cimarron 138kV bus. b. Clear fault after 16 cycles by tripping the faulted line.
19	FLT_19_CIMARON4_HAYMAKR4SB_138kV_1PH	 Single phase fault with stuck breaker on the Cimarron (514898) to Haymaker (514863) 138kV line, near Cimarron. a. Apply fault at the Cimarron 138kV bus. b. Clear fault after 16 cycles by tripping the faulted line.

Table 3-1: Contingencies Evaluated	Table 3-1:	Contingencies	Evaluated
------------------------------------	------------	---------------	-----------

Cont. No.	Contingency Name	Description
20	FLT_20_CORNVIL4_NORGE4SB_138kV_1PH	 Single phase fault with stuck breaker on the Cornville (511449) to Norge (511483) 138kV line, near Cornville. a. Apply fault at the Cornville 138kV bus. b. Clear fault after 16 cycles by tripping the faulted line.
21	FLT_21_CORNVIL4_N29CHIK4SB_138kV_1PH	 Single phase fault with stuck breaker on the Cornville (511449) to N29Chik (511502) 138kV line, near Cornville. a. Apply fault at the Cornville 138kV bus. b. Clear fault after 16 cycles by tripping the faulted line.
22	FLT_22_CIMARON4_CZECHAL4PO_138kV_3PH	Prior outage on the Leonard (561000) to Cornville (511449) 138kV line: 3 phase fault on the Cimarron (514898) to Czech Hall (514894) 138kV line, near Cimarron 138kV. a. Prior Outage Leonard to Cornville 138kV. b. Apply fault at the Cimarron 138kV bus. c. Clear fault after 5 cycles by tripping the faulted line. d. Wait 20 cycles, and then re-close the line in (b) back into the fault. e. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
23	FLT_23_LEONARD_CORNVIL4PO_138kV_3PH	 Prior outage on the Cimarron (514898) to Czech Hall (514894) 138kV line: 3 phase fault on the Leonard (561000) to Cornville (511449) 138kV line, near Leonard 138kV. a. Prior Outage Cimarron to Czech Hall 138kV. b. Apply fault at the Leonard 138kV bus. c. Clear fault after 5 cycles by tripping the faulted line. d. Wait 20 cycles, and then re-close the line in (b) back into the fault. e. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
24	FLT_24_CIMARON7_CIMARON4_345_138kV_3P H	 3 phase fault on the Cimarron 345kV (514901) to Cimarron 138kV (514898) to Cimarron 13.8kV (515714) transformer, near Cimarron 345kV. a. Apply fault at the Cimarron 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
25	FLT_25_GRACMNT7_GRACMNT4_345_138kV_3 PH	 3 phase fault on the Gracemont 345kV (515800) to Gracemont 138kV (515802) to Gracemont 13.8kV (515801) transformer, near Gracemont 345kV. a. Apply fault at the Gracemont 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.

Results

The stability analysis was performed and the results are summarized in **Table 3-2**. The stability analysis has shown that for the contingencies simulated the generators in the monitored areas remained stable and the system voltages recovered to acceptable levels.

In the previous restudy utilizing the Gamesa G114 2.0MW and 2.1MW wind turbine generators (using Gamesa GD0803 dynamic model for PSSE Version 32), GEN-2014-020 tripped off-line for under-frequency in response to FLT_22_Cimaron4_Czechal4PO_138kV_3PH (prior outage of Leonard to Cornville 138kV followed by a three phase fault on Cimarron to Czech Hall 138kV). As a comparison FLT_22_Cimaron4_Czechal4PO_138kV_3PH was tested on the Vestas V110 VCSS 2.0MW wind turbine generators. The Vestas wind turbines did not trip off line.

The interconnection customer worked with Gamesa to resolve the under-frequency tripping issue. Gamesa provided an updated PSSE Version 32 dynamic model GD0810 which was used in this restudy.

The stability plots will be available upon customer request.

	Contingency Number and Name	2016WP	2017SP	2025SP
0	FLT_000_NOFAULT	STABLE	STABLE	STABLE
1	FLT_01_LEONARD_TUTTLE4_138kV_3PH	STABLE	STABLE	STABLE
2	FLT_02_LEONARD_CORNVIL4_138kV_3PH	STABLE	STABLE	STABLE
3	FLT_03_TUTTLE4_TUTCONT4_138kV_3PH	STABLE	STABLE	STABLE
4	FLT_04_CORNVIL4_NORGE4_138kV_3PH	STABLE	STABLE	STABLE
5	FLT_05_CORNVIL4_SANTAFE4_138kV_3PH	STABLE	STABLE	STABLE
6	FLT_06_CORNVIL4_N29CHIK4_138kV_3PH	STABLE	STABLE	STABLE
7	FLT_07_CORNVIL4_BLANCHD4_138kV_3PH	STABLE	STABLE	STABLE
8	FLT_08_CORNVIL4_CORNTP4_138kV_3PH	STABLE	STABLE	STABLE
9	FLT_09_TUTCONT4_CIMARON4_138kV_3PH	STABLE	STABLE	STABLE
10	FLT_10_CIMARON4_ELRENO4_138kV_3PH	STABLE	STABLE	STABLE
11	FLT_11_CIMARON4_JENSENT4_138kV_3PH	STABLE	STABLE	STABLE
12	FLT_12_CIMARON4_HAYMAKR4_138kV_3PH	STABLE	STABLE	STABLE
13	FLT_13_CIMARON4_CZECHAL4_138kV_3PH	STABLE	STABLE	STABLE
14	FLT_14_CIMARON4_SARA4_138kV_3PH	STABLE	STABLE	STABLE
15	FLT_15_CORNTP4_SEQUOYAHJ4_138kV_3PH	STABLE	STABLE	STABLE
16	FLT_16_CORNTP4_NAPLESTP_138kV_3PH	STABLE	STABLE	STABLE
17	FLT_17_LES7_OKU7SB_345kV_1PH	STABLE	STABLE	STABLE
18	FLT_18_CIMARON4_CZECHAL4SB_138kV_1PH	STABLE	STABLE	STABLE
19	FLT_19_CIMARON4_HAYMAKR4SB_138kV_1PH	STABLE	STABLE	STABLE
20	FLT_20_CORNVIL4_NORGE4SB_138kV_1PH	STABLE	STABLE	STABLE
21	FLT_21_CORNVIL4_N29CHIK4SB_138kV_1PH	STABLE	STABLE	STABLE
22	FLT_22_CIMARON4_CZECHAL4PO_138kV_3PH	STABLE	STABLE	STABLE
23	FLT_23_LEONARD_CORNVIL4PO_138kV_3PH	STABLE	STABLE	STABLE
24	FLT_24_CIMARON7_CIMARON4_345_138kV_3PH	STABLE	STABLE	STABLE
25	FLT_25_GRACMNT7_GRACMNT4_345_138kV_3PH	STABLE	STABLE	STABLE

Table 3-2: Results

FERC LVRT Compliance

FERC Order 661A places specific requirements on wind farms through its Low Voltage Ride Through (LVRT) provisions. For Interconnection Agreements signed after December 31, 2006, wind farms shall stay on line for faults at the POI that draw the voltage down at the POI to 0.0 pu. The faults listed below in **Table 3-3** were tested to meet Order 661A LVRT provisions. GEN-2014-020 was found to be in compliance with FERC Order 661A.

Table 3-3: LVRT Contingencies

Contingency Number and Name	Description
	3 phase fault on the Leonard (561000) to Tuttle (511501) 138kV line, near Leonard.
	a. Apply fault at the Leonard 138kV bus.
FLT_01_LEONARD_TUTTLE4_138kV_3PH	b. Clear fault after 5 cycles by tripping the faulted line.
	c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
	d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
	3 phase fault on the Leonard (561000) to Cornville (511449) 138kV line, near
	Leonard.
	a. Apply fault at the Leonard 138kV bus.
FLT_02_LEONARD_CORNVIL4_138kV_3PH	b. Clear fault after 5 cycles by tripping the faulted line.
	c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
	d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

4. Power Factor Analysis

The power factor analysis was performed for each project included in this study and is designed to demonstrate the reactive power requirements at the point of interconnection (POI) using the current study upgrade cases. For all projects that require reactive power, the final requirement in the GIA will be the proforma 95% lagging to 95% leading at the POI.

Model Preparation

For each project included in this study, as well as previous queued projects modeled at the same POI, the projects were turned off for the power factor analysis. The projects were replaced by an equivalent generator located at the POI producing the total MW of the project at that POI and 0.0 Mvar capability.

An Mvar generator without limits was modeled at the interconnection project POI to hold a voltage schedule at the POI consistent with the greater of the voltage schedule in the base case or unity (1.0 pu) voltage.

Disturbances

Each N-1 contingency evaluated in the Stability Analysis found in **Table 3-1** was also included in the determination of the power factor requirements.

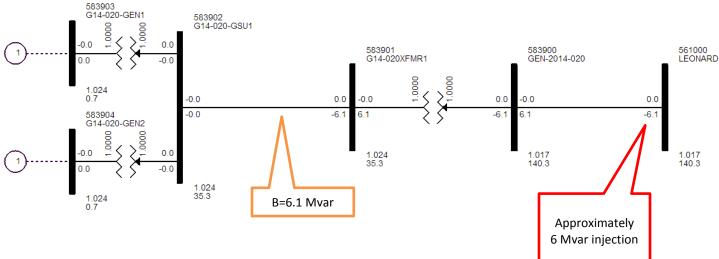
Results

The power factor ranges are summarized in **Table 4-1** and the resultant ranges are shown **Table D-1**. The analysis showed that reactive power is required for the study project, the final requirement in the Generation Interconnection Agreement (GIA) for each project will be the pro-forma 95% lagging to 95% leading at the POI.

For analyzing power factor results a positive Q (Mvar) output indicates that the equivalent generator is supplying reactive power to the system, implying a lagging power factor. A negative Q (Mvar) output indicates that the equivalent generator is absorbing reactive power from the system, implying a leading power factor.

Request	Capacity (MW)	Point of Interconnection (POI)	Fuel	Generator	Lagging (providing Mvars)	Leading (absorbing Mvars)
GEN-2014-020	99.1	Leonard 138kV (561000)	Wind	17 x Gamesa G114 2.0MW = 34.0MW, and 31 x Gamesa G114 2.1MW = 65.1MW	0.95	0.95

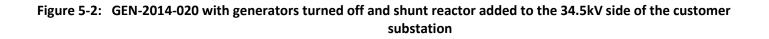
Table 4-1: Summary of Power Factor Analysis at the POI


NOTE: As reactive power is required for the project, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the point of interconnection.

5. Reduced Wind Generation Analysis

A low wind analysis was performed for GEN-2014-020. SPP performed this low wind analysis to determine the capacitive charging current injected at the POI.

The project generators and capacitors (if any) were turned off in the base case. **Figure 5-1** shows the resulting reactive power injection (approximately 6Mvar) at the POI that is due to the capacitance of the project's transmission lines and collector cables. Also, the figure shows how the capacitance is distributed throughout the project. In this impact restudy GEN-2014-020 is responsible for a 6Mvar reactor needed to offset the capacitive effects of the collector system (6.1Mvar) and of the transmission lead (0Mvar) that connects into the transmission system under no/reduced wind generating conditions. The 6Mvar reactor will be required and would normally be installed on the low side of the 138/34.5kV transformer. The Interconnection Customer may use wind turbine manufacturing options for providing reactive power under no/reduced generation conditions.


Figure 5-2 shows a shunt reactor added at the GEN-2014-020 project substation 34.5 kV bus to bring the Mvar flow into the POI down to approximately zero.

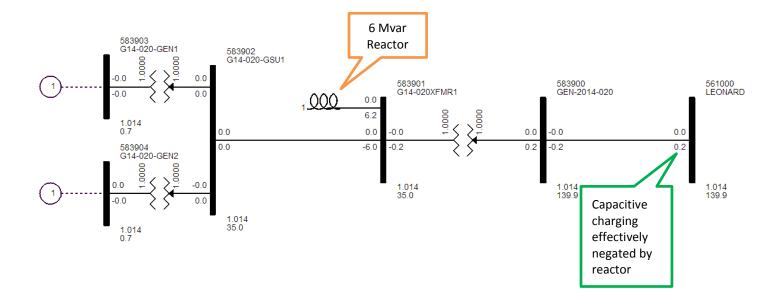


Figure 5-1: GEN-2014-020 with generators turned off

Notes:

- 1. Amber box shows distribution of charging capacitance in the facility. The charging capacitance on the transmission line from the generation facility to the POI is negligible.
- 2. Red box shows the net effect of all the charging capacitances at the POI

6. Short Circuit Analysis

The short circuit analysis was performed on the 2017 & 2025 Summer Peak power flow cases using the PSS/E ASCC program. Since the power flow model does not contain negative and zero sequence data, only three-phase symmetrical fault current levels were calculated at the point of interconnection up to and including five levels away.

Short Circuit Analysis was conducting using flat conditions with the following PSS/E ASCCC program settings:

- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFORMER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

Results

The results of the short circuit analysis are shown in **Appendix F, Table F-1** *GEN-2014-020 Short Circuit Analysis Results (2017SP)* and **Table F-2** *GEN-2014-020 Short Circuit Analysis Results (2025SP)*.

7. Conclusion

The GEN-2014-020 Interconnection Customer has requested a modification to its Generator Interconnection Request to change its generators from Vestas V110 VCSS 2.0 MW wind turbines to Gamesa G114 2.0 MW and Gamesa G114 2.1 MW wind turbines. Originally, it consisted of fifty (50) Vestas V110 VCSS 2.0MW wind turbines for a total of 100.0 MW. The requested change is seventeen (17) Gamesa G114 2.0MW wind turbines and thirty-one (31) Gamesa G114 2.1MW wind turbines for a total of 99.1 MW. The point of interconnection (POI) is the new American Electric Power West (AEPW) Leonard 138kV Substation.

The restudy showed that the stability analysis has determined that with all previously assigned Network Upgrades in service, generators in the monitored areas remained stable and within the pre-contingency, voltage recovery, and post fault voltage recovery criterion of 0.7pu to 1.2pu for the entire modeled disturbances. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

A power factor analysis was performed for the wind turbine modification request. As reactive power is required for GEN-2014-020, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the POI.

An analysis was conducted to determine the capacitive effects on the transmission system caused by the generator lead and collector system during periods of reduced generation. To offset these effects, the generating facility is required to provide reactive compensation of approximately 6 MVAR of inductive reactance during periods of reduced generation. Such compensation can be provided either by discrete reactive devices or by the generator itself if it possesses that capability. Short Circuit analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases.

With the assumptions outlined in this report and with all the required network upgrades from the DISIS 2015-002 in place, GEN-2014-020 with the Gamesa G114 2.0MW and Gamesa G114 2.1MW wind turbine generators should be able to interconnect reliably to the SPP transmission grid. The change in wind turbine generator is not a Material Modification.

It should be noted that this study analyzed the requested modification to change generator technology, manufacturer, and layout. Power flow analysis was not performed. This study analyzed many of the most probable contingencies, but it is not an all-inclusive list and cannot account for every operational situation. It is likely that the customer may be required to reduce its generation output to 0 MW, also known as curtailment, under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Nothing in this study should be construed as a guarantee of delivery or transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

Appendix A – 2016 Winter Peak Stability Plots

(Available on request)

Appendix B – 2017 Summer Peak Stability Plots

(Available on request)

Appendix C – 2025 Summer Peak Stability Plots

(Available on request)

Appendix D – Power Factor Analysis Results

Table D-1: GEN-2014-020 Power Factor Analysis Results

	Leading power factor is absorbing vars; Lagging power factor is providing vars									
	GEN-2014-020 POI: Leonard 138 kV (561000) Power at POI (MW): 99.1	2016 Winter Peak2017 Summer PeakPOI Voltage = 1.014 puPOI Voltage = 1.015 pu		2025 Summer Peak POI Voltage = 1.013 pu						
	Contingency Name	Mvars at POI	Power	Factor	Mvars at POI	Power F	actor	Mvars at POI	Power F	actor
0	FLT_00_NoFault	-16.6364	0.9862	LEAD	-17.0418	0.98553	LEAD	-16.9315	0.98572	LEAD
1	FLT_01_LEONARD_TUTTLE4_138kV	-6.45866	0.99788	LEAD	0.334608	0.99999	LAG	3.243231	0.99947	LAG
2	FLT_02_LEONARD _CORNVIL4_138kV	-22.7483	0.97465	LEAD	-30.1295	0.95676	LEAD	-32.7847	0.9494	LEAD
3	FLT_03_TUTTLE4_TUTCONT4_138kV	-5.73318	0.99833	LEAD	1.664736	0.99986	LAG	4.74545	0.99886	LAG
4	FLT_04_CORNVIL4_NORGE4_138kV	-16.017	0.98719	LEAD	-16.0106	0.9872	LEAD	-15.7792	0.98756	LEAD
5	FLT_05_CORNVIL4_SANTAFE4_138kV	-17.19	0.98529	LEAD	-17.7075	0.98441	LEAD	-17.3877	0.98495	LEAD
6	FLT_06_CORNVIL4_N29CHIK4_138kV	-13.0187	0.99148	LEAD	-11.4777	0.99336	LEAD	-10.1421	0.99480	LEAD
7	FLT_07_CORNVIL4_BLANCHD4_138kV	-12.8271	0.99173	LEAD	-14.672	0.98922	LEAD	-14.4769	0.9895	LEAD
8	FLT_08_CORNVIL4_CORNTP4_138kV	-20.7138	0.97885	LEAD	-18.7212	0.98262	LEAD	-18.975	0.98216	LEAD
9	FLT_09_TUTCONT4_CIMARON4_138kV	-2.86008	0.99958	LEAD	4.635061	0.99891	LAG	7.746366	0.99696	LAG
10	FLT_10_CIMARON4_ELRENO4_138kV	-17.5939	0.98460	LEAD	-18.1956	0.98356	LEAD	-18.0239	0.98386	LEAD
11	FLT_11_CIMARON4_JENSENT4_138kV	-17.2858	0.98513	LEAD	-17.8735	0.98412	LEAD	-17.7892	0.98427	LEAD
12	FLT_12_CIMARON4_HAYMAKR4_138kV	-15.1224	0.98856	LEAD	-16.2525	0.98682	LEAD	-16.6347	0.98620	LEAD
13	FLT_13_CIMARON4_CZECHAL4_138kV	-12.6298	0.99198	LEAD	-16.0489	0.98714	LEAD	-16.7857	0.98596	LEAD
14	FLT_14_CIMARON4_SARA4_138kV	-15.5621	0.98789	LEAD	-17.9142	0.98405	LEAD	-17.2415	0.9852	LEAD
15	FLT_15_CORNTP4_SEQUOYAHJ4_138kV	-11.6436	0.99317	LEAD	-11.766	0.99303	LEAD	-10.9317	0.99397	LEAD
16	FLT_16_CORNTP4_NAPLESTP_138kV	-23.2705	0.97352	LEAD	-22.4642	0.97526	LEAD	-22.7901	0.97456	LEAD
17	FLT_17_LES7_OKU7SB_345kV	-14.4599	0.98952	LEAD	-16.6063	0.98625	LEAD	-16.6591	0.98616	LEAD
18	FLT_18_CIMARON4_CZECHAL4SB_138kV	-12.6298	0.99198	LEAD	-16.0489	0.98714	LEAD	-16.7857	0.98596	LEAD
19	FLT_19_CIMARON4_HAYMAKR4SB_138kV	-15.1224	0.98856	LEAD	-16.2525	0.98682	LEAD	-16.6347	0.98620	LEAD
20	FLT_20_CORNVIL4_NORGE4SB_138kV	-16.017	0.98719	LEAD	-16.0106	0.9872	LEAD	-15.7792	0.98756	LEAD
21	FLT_21_CORNVIL4_N29CHIK4SB_138kV	-13.0187	0.99148	LEAD	-11.4777	0.99336	LEAD	-10.1421	0.99480	LEAD
22	FLT_22_CIMARON4_CZECHAL4PO_138kV	-12.6298	0.99198	LEAD	-16.0489	0.98714	LEAD	-16.7857	0.98596	LEAD
23	FLT_23_ LEONARD _CORNVIL4PO_138kV	-22.7483	0.97465	LEAD	-30.1295	0.95676	LEAD	-32.7847	0.9494	LEAD
24	FLT_24_CIMARON7_CIMARON4_345_138kV	-17.8561	0.98415	LEAD	-13.6486	0.99065	LEAD	-12.3199	0.99236	LEAD
25	FLT_25_GRACMNT7_GRACMNT4_345_138kV	-16.9489	0.98569	LEAD	-17.2032	0.98527	LEAD	-16.6601	0.98616	LEAD

Appendix E – Reduced Wind Generation Analysis Results

(One-line diagram moved to main body of report)

Appendix F – Short Circuit Analysis Results

Table F-1: GEN-2014-020 Short Circuit Analysis Results (2017SP)

PSS®E-32.2.0 ASCC SHORT CIRCUIT CURRENTS TUE, MAR 21 2017 11:25 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 17S WITH MMWG 15S, MRO 16W TOPO/16S PROF, SERC 16S

OPTIONS USED:

- FLAT CONDITIONS
- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

			THREE PHAS	E FAULT
X BUS	X		/I+/	AN(I+)
561000 [LEONARD	138.00]	AMP	10242.8	-80.69
511449 CORNVIL4	138.00]	AMP	15884.1	-77.71
511501 TUTTLE4	138.00	AMP	10318.7	-80.75
583900 GEN-2014-0	020138.00	AMP	10242.8	-80.69
511418 CORNV2-1	13.800]	AMP	8421.3	-88.31
511425 [TUTCONT4	138.00]	AMP	10443.8	-80.80
511450 CORNVIL2	69.000]	AMP	6476.9	-84.36
511483 [NORGE4	138.00]	AMP	11017.9	-75.48
511492 SANTAFE4	138.00]	AMP	8340.0	-78.05
511502 N29CHIK4	138.00]	AMP	10061.3	-79.67
511508 BLANCHD4	138.00]	AMP	5779.5	-68.35
511516 [ALEX BR4	138.00]	AMP	6223.0	-80.90
520867 [CORN TP4	138.00]	AMP	13538.7	-77.11
583901 [G14-020XFM	NR134.500]	AMP	16221.9	-84.73
511421 [VERDEN 4	138.00]	AMP	9432.7	-80.58
511424 [T-CONCO4	138.00]	AMP	6818.8	-74.78
511451 [CYRIL2	69.000]	AMP	4616.1	-75.05
511477 [S.W.S4	138.00]	AMP	26846.5	-83.57
511491 [RUSHSPT4	138.00]	AMP	8001.2	-77.79
511515 [TEXAS 4	138.00]	AMP	5694.0	-80.68
511562 [ROUNDCK4	138.00]	AMP	6561.5	-78.97
514898 [CIMARON4	138.00]	AMP	42010.9	-84.99
515055 [MAUD 4	138.00]	AMP	19551.4	-79.34
520422 [SEQUOYAHJ4	138.00]	AMP	21393.4	-81.53
520510 [NAPLESTP	138.00]	AMP	8570.9	-76.16
583100 [GEN-2011-0	050138.00]	AMP	6803.7	-79.27
583902 [G14-020-G	SU134.500]	AMP	15728.8	-83.83
510948 [EARLSBORO	4138.00]	AMP	7416.5	-72.22
511413 [SWS#11	13.800]	AMP	6286.0	-87.19
511423 [FLE TAP4	138.00]	AMP	8275.1	-81.06
511426 [RUSHSP 4	138.00]	AMP	6870.8	-77.32
511427 [RUSHNG 4	138.00]	AMP	4687.6	-79.07
511445 [CARNEG-4	138.00]	AMP	7407.6	-80.85
511476 [S.W.S2	69.000]	AMP	4151.6	-87.44
511487 [ELGINJT2	69.000]	AMP	8384.0	-81.50
511514 [PHILPS 4	138.00]	AMP	5683.5	-80.58
511560 [GRADY 4	138.00]	AMP	5902.6	-79.96
511563 [ELSWORTH	4138.00]	AMP	9565.2	-81.08
511846 [SWS1-1	14.400]	AMP	26374.0	-86.77

511847	[SWS2-1	14.400]	AMP	26374.0	-86.77
511848	[SWS3-1	24.000]	AMP	84353.5	-87.45
511849	[SWS NG4	13.800]	AMP	24017.4	-88.39
511850	[SWS NG5	13.800]	AMP	24064.1	-88.36
514819	[EL-RENO4	138.00]	AMP	15217.2	-80.01
514820	[JENSENT4	138.00]	AMP	14994.4	-79.44
514863	HAYMAKR4	138.00]	AMP	26003.7	-82.45
514894	- CZECHAL4	138.00]	AMP	28009.6	-82.98
514895	SARA 4	138.00	AMP	18579.9	-84.10
514901	CIMARON7	345.00	AMP	29712.8	-85.76
515044	SEMINOL4	138.00]	AMP	39082.5	-85.70
515054	MAUD 2	69.000	AMP	11678.3	-79.11
515075	FRSTHIL4	138.00]	AMP	13604.5	-77.05
515714	CIMAR011	13.800]	AMP	37565.5	-88.58
515715	CIMAR021	13.800]	AMP	52243.1	-87.61
515736	[MAUD 1	13.200]	AMP	19997.7	-86.50
520604	[NAPLES	138.00]	AMP	6076.3	-74.14
520814	ANADARK4	138.00]	AMP	27936.6	-84.09
520888	[PAYNE	138.00]	AMP	8871.7	-76.54
521089	[WASHITA4	138.00]	AMP	24255.6	-83.82
529307	[OMMARLO4	138.00]	AMP	6166.6	-72.24
583101	[G11-050XFMR1	-	AMP	15735.5	-85.07
510877	[FIXCT4	138.00]	AMP	7018.2	-71.73
511412	[ELGJT1-1	13.800]	AMP	10175.7	-88.25
511422	FLETCHR4	138.00]	AMP	7592.6	-80.48
511443	[BING-TP2	69.000]	AMP	2640.0	-76.07
511463	[HOB-JCT4	138.00]	AMP	6369.1	-77.73
511467	[L.E.S4	138.00]	AMP	22995.2	-84.43
511473	[PO.HILL2	69.000]	AMP	5762.3	-77.34
511486	[ELGINJT4	138.00]	AMP	9638.5	-81.08
511513	[LWATER 4	138.00]	AMP	4215.5	-80.97
514801	[MINCO 7	345.00]	AMP	16167.5	-85.15
514818	[ELRENO 2	69.000]	AMP	7202.1	-78.40
514821	JENSEN 4	138.00]	AMP	10527.1	-79.40
514823	[ROMNOSE4	138.00]	AMP	4121.0	-74.29
514853	DVISION4	138.00]	AMP	35470.0	-83.30
514880	[NORTWST7	345.00]	AMP	29352.6	-86.05
514893	[XEROX 4	138.00]	AMP	29364.4	-82.99
514934	DRAPER 7	345.00]	AMP	20372.9	-85.15
515040	SEMINL1G	20.900]	AMP	188172.0	-88.42
515045	SEMINOL7	345.00]	AMP	25902.8	-86.18
515043	[PEARSNT2	69.0001	AMP	4439.7	-69.51
515073	[ERLSBOR2	69.000]		8301.6	-69.74
	FRSTHIL2	69.000]	amp Amp	11028.5	-78.79
	[PAOLI- 4	138.00]	AMP	9989.6	-79.43
	[PARKLN 4	138.00]	AMP	15667.0	-81.41
	[STRLGTP4	138.00]	AMP	13515.0	-76.97
	STHLAKE4	138.00]	AMP	20605.8	-84.63
515496	[KNAWATP2	69.000]	AMP	4457.3	-65.38
515497	[MATHWSN7	345.00]	AMP	27532.7	-85.77
515503	[LTRIVRT2	69.000]	AMP	4758.4	-74.49
515531	[VANOSTP4	138.00]	AMP	12901.1	-78.60
	[FSHRTAP7	345.00]	AMP	15918.0	-85.09
	[EL RENO1	13.200]	AMP	9680.5	-83.90
	[FRSTHIL1	13.800]	AMP	13388.9	-87.06
	[SEMINO11	14.400]	AMP	37126.8	-87.00
	SEMINO11	14.400]	AMP	23289.8	-87.80
515757 515802	[GRACMNT4	138.00]	AMP	25653.2	-84.72
	ANADARK2	69.000]	AMP	15384.9	-82.11
520810	[ANADAKK2 [ANADRK4	13.800]	AMP	13384.9 53911.7	-82.11
	-	-			
5 / U × I /					
520812	[ANADRK5	13.800]	АМР лмр	53971.8 53909 6	-88.87
520813	ANADRK6	13.800]	AMP	53909.6	-88.85
520813 520849	-	-	amp Amp		

520923	[GEORGIA4	138.00]	AMP	16106.7	-80.64
521017	ONEY 4	138.00]	AMP	10063.9	-82.62
521023	[PAOLI 4	138.00]	AMP	6968.4	-75.71
521031	POCASET4	138.00]	AMP	7455.5	-80.74
521088	[WASHITA2	69.000]	AMP	9243.1	-79.91
521101	[GENCO1 4	13.800]	AMP	31866.8	-88.16
521102	[GENCO2 4	13.800]	AMP	31927.9	-88.12
521110	[ORME1	13.800]	AMP	49920.1	-88.78
521111	[ORME2	13.800]	AMP	49920.1	-88.78
521112	[ORME3	13.800]	AMP	49920.1	-88.78
521113	[SLICKHILLS4	138.00]	AMP	7271.0	-85.98
521129	[BLUCAN5 4	138.00]	AMP	4791.2	-77.96
521179	[WASHTERT	13.800]	AMP	10033.3	-87.64
521181	[ADRKTERT	13.800]	AMP	20150.3	-85.84
529344	[OMDUNE-4	138.00]	AMP	5858.2	-70.20
583102	[G11-050-GSU2	134.500]	AMP	15595.0	-84.98

Table F-2: GEN-2014-020 Short Circuit Analysis Results (2025SP)

PSS®E-32.2.0 ASCC SHORT CIRCUIT CURRENTS TUE, MAR 21 2017 11:25 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 2025S WITH MMWG 2024S, MRO & SERC 2025 SUMMER

OPTIONS USED:

- FLAT CONDITIONS
- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

				THREE PHAS	E FAULT
Х	BUS	X		/I+/	AN(I+)
561000	[LEONARD	138.00]	AMP	10328.2	-80.66
511449	CORNVIL4	138.00	AMP	16474.6	-77.53
511501	TUTTLE4	138.00	AMP	10396.1	-80.73
583900	- GEN-2014-02	20138.00]	AMP	10328.2	-80.66
511418	_ [CORNV2-1	13.800]	AMP	8437.6	-88.32
511425	TUTCONT4	138.00]	AMP	10518.3	-80.77
511450	CORNVIL2	69.000]	AMP	6525.5	-84.37
511483	[NORGE4	138.00]	AMP	11386.5	-75.28
511492	[SANTAFE4	138.00]	AMP	8459.3	-77.98
511502	[N29CHIK4	138.00]	AMP	10403.2	-79.61
511508	[BLANCHD4	138.00]	AMP	5829.3	-68.22
511516	[ALEX BR4	138.00]	AMP	6303.1	-80.88
520867	[CORN TP4	138.00]	AMP	13944.5	-76.94
583901	[G14-020XFM	R134.500]	AMP	16248.9	-84.73
511421	[VERDEN 4	138.00]	AMP	9867.6	-80.59
511424	[T-CONCO4	138.00]	AMP	6850.1	-74.74
511451	[CYRIL2	69.000]	AMP	4642.1	-75.02
511477	[S.W.S4	138.00]	AMP	33581.5	-84.61
511491	[RUSHSPT4	138.00]	AMP	8110.2	-77.72
511515	[TEXAS 4	138.00]	AMP	5757.5	-80.66
511562	[ROUNDCK4	138.00]	AMP	6638.6	-78.92
514898	[CIMARON4	138.00]	AMP	42568.6	-85.06
515055	[MAUD 4	138.00]	AMP	19611.8	-79.27
520422	[SEQUOYAHJ4	138.00]	AMP	23071.8	-81.55
520510	[NAPLESTP	138.00]	AMP	8678.0	-76.05
583100	[GEN-2011-05		AMP	6876.3	-79.22
583902	[G14-020-GSl	-	AMP	15752.2	-83.83
510948	[EARLSBORO	4138.00]	AMP	7499.9	-72.10
511413	[SWS#11	13.800]	AMP	6315.5	-87.23
511423	[FLE TAP4	138.00]	AMP	8528.8	-81.04
511426	[RUSHSP 4	138.00]	AMP	6950.9	-77.25
511427	[RUSHNG 4	138.00]	AMP	4726.8	-79.04
511445	[CARNEG-4	138.00]	AMP	7706.1	-80.98
511476	[S.W.S2	69.000]	AMP	4216.5	-87.56
511487	[ELGINJT2	69.000]	AMP	8472.4	-81.51
511514	[PHILPS 4	138.00]	AMP	5746.1	-80.55
511560	[GRADY 4	138.00]	AMP	5967.4	-79.93
511563	[ELSWORTH	4138.00]	AMP	9849.2	-81.06
511846	[SWS1-1	14.400]	AMP	58591.6	-88.58
511847	[SWS2-1	14.400]	AMP	58591.6	-88.58
511848	[SWS3-1	24.000]	AMP	88686.9	-87.76

511849	[SWS NG4	13.800]	AMP	61548.1	-89.41
511850	[SWS NG5	13.800]	AMP	61595.9	-89.40
514819	[EL-RENO4	138.00]	AMP	15303.4	-80.03
514820	[JENSENT4	138.00]	AMP	15078.8	-79.44
514863	[HAYMAKR4	138.00]	AMP	26157.9	-82.46
514894	CZECHAL4	138.00]	AMP	27942.1	-83.01
514895	SARA 4	138.00	AMP	18651.0	-84.10
514901	CIMARON7	345.00	AMP	31188.1	-85.95
515044	SEMINOL4	138.00	AMP	39235.2	-85.67
515054	MAUD 2	69.000	AMP	11698.9	-79.08
515075	_ [FRSTHIL4	138.00	AMP	13540.0	-77.03
515714	CIMAR011	13.800	AMP	37605.0	-88.59
515715	CIMAR021	13.800]	AMP	52357.0	-87.62
515736	- [MAUD 1	13.200	AMP	20010.4	-86.50
520604	NAPLES	138.00	AMP	6129.6	-74.05
520814	ANADARK4	138.00	AMP	30952.3	-84.40
520888	PAYNE	138.00	AMP	8952.7	-76.44
521089	[WASHITA4	138.00	AMP	27481.2	-84.23
529307	OMMARL04	138.00	AMP	6225.8	-72.13
583101	[G11-050XFMR1	-	AMP	15783.7	-85.08
510877	FIXCT4	138.00]	AMP	7123.4	-71.61
511412	ELGJT1-1	13.800]	AMP	10201.0	-88.27
511422	FLETCHR4	138.00]	AMP	7805.5	-80.44
511443	BING-TP2	69.000]	AMP	2666.4	-76.03
511463	HOB-JCT4	138.00]	AMP	6463.6	-77.66
511467	[L.E.S4	138.00]	AMP	23606.1	-84.36
511473	[PO.HILL2	69.000]	AMP	5796.9	-77.31
511486	[ELGINJT4	138.00]	AMP	9918.6	-81.05
511513	LWATER 4	138.00]	AMP	4248.5	-80.95
514801	[MINCO 7	345.00]	AMP	16541.3	-85.20
514818	[ELRENO 2	69.000]	AMP	7315.5	-78.43
514821	JENSEN 4	138.00]	AMP	10575.3	-79.39
514823	[ROMNOSE4	138.00]	AMP	4124.0	-74.28
514853	DVISION4	138.00]	AMP	35688.2	-83.32
514880	[NORTWST7	345.00]	AMP	30589.2	-86.09
514893	XEROX 4	138.00]	AMP	29207.1	-83.02
514934	DRAPER 7	345.00]	AMP	20560.0	-85.12
515040	[SEMINL1G	20.900]	AMP	188375.9	-88.41
515045	[SEMINOL7	345.00]	AMP	26094.6	-86.15
515053	[PEARSNT2	69.000]	AMP	4442.4	-69.50
515073	[ERLSBOR2	69.000]	AMP	8317.7	-69.72
515074	[FRSTHIL2	69.000]	AMP	11015.5	-78.76
515100	[PAOLI- 4	138.00]	AMP	10001.8	-79.41
515178	[PARKLN 4	138.00]	AMP	15709.9	-81.39
	[STRLGTP4	138.00]	AMP	13422.4	-76.96
	STHLAKE4	138.00]	AMP	20652.1	-84.62
515496	[KNAWATP2	69.000]	AMP	4459.8	-65.36
515497	MATHWSN7	345.00]	AMP	29724.3	-86.08
515503	LTRIVRT2	69.000]	AMP	4765.4	-74.47
515531	[VANOSTP4	138.00]	AMP	12924.2	-78.57
	[FSHRTAP7	345.00]	AMP	16284.9	-85.15
	[EL RENO1	13.200]	AMP	9726.2	-83.92
	FRSTHIL1	13.800]	AMP	13385.8	-87.05
	SEMINO11	14.400]	AMP	37141.2	-88.54
515757	[SEMINO21	14.400]	AMP	23295.5	-87.80
515802	GRACMNT4	138.00]	AMP	27937.5	-84.83
	ANADARK2	69.000]	AMP	19683.7	-83.76
	ANADRK4	13.800]	AMP	54242.3	-88.93
	ANADRK5	13.800]	AMP	54303.8	-88.91
520813	[ANADRK6	13.800]	AMP	54240.2	-88.89
	[ELGIN4	138.00]	AMP	9771.2	-80.96
	[CRINER	138.00]	AMP	8232.9	-77.05
	[GEORGIA4	138.00]	AMP	17071.2	-80.63
521017	-	138.00]		10517.7	-82.72
	-				

521023	[PAOLI 4	138.00]	AMP	7014.1	-75.64
521031	[POCASET4	138.00]	AMP	7577.4	-80.71
521088	[WASHITA2	69.000]	AMP	9730.9	-79.55
521101	[GENCO1 4	13.800]	AMP	32173.7	-88.22
521102	[GENCO2 4	13.800]	AMP	32236.1	-88.18
521110	[ORME1	13.800]	AMP	50249.1	-88.82
521111	[ORME2	13.800]	AMP	50249.1	-88.82
521112	[ORME3	13.800]	AMP	50249.1	-88.82
521113	[SLICKHILLS4	138.00]	AMP	7367.0	-86.02
521129	[BLUCAN5 4	138.00]	AMP	4849.6	-77.88
521179	[WASHTERT	13.800]	AMP	10162.7	-87.63
521181	[ADRKTERT	13.800]	AMP	21276.4	-86.37
529344	[OMDUNE-4	138.00]	AMP	5906.9	-70.08
583102	[G11-050-GSU	134.500]	AMP	15640.3	-84.98