GEN-2013-027 Impact Restudy for Generator Modification (Turbine Change)

August 2017 Generator Interconnection

000000

000

000

000

000

Revision History

Date	Author	Change Description
8/23/2017	SPP	GEN-2013-027 Impact Restudy for Generator Modification Report Issued
		SPP Southwest Power Pool
		UII Power Pool

Executive Summary

The GEN-2013-027 Interconnection Customer has requested a modification to its Generator Interconnection Request to change wind turbine generators for its project. Previously, it consisted of sixty-one (61) Siemens 108m 2.3MW and four (4) Siemens 108m with Powerboost 2.415MW wind turbines for a total of 149.96 MW. The requested change is for forty-three (43) Vestas V126 GulfStream (GS) 3.45MW wind for a total of 148.35 MW. The Point of Interconnection (POI) is the new Southwestern Public Service Company (SPS) Needmore 230 kV Substation.

The study models used were the 2016 winter, 2017 summer, and 2025 summer models that included Interconnection Requests through the facility study queue at DISIS-2015-002. Additionally, DISIS-2015-001 models were also created from the DISIS-2015-002 models in order to provide a baseline verification for the turbine change. The baseline verification was used to identify Network Upgrade(s) triggered by the addition of the lower queued DISIS-2015-002 generation.

The restudy showed that the stability analysis has determined with all previously assigned Network Upgrades in service, generators in the monitored areas remained stable and within the pre-contingency, voltage recovery, and post fault voltage recovery criterion of 0.7pu to 1.2pu for the entire modeled disturbances. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

Power factor analysis for the study generation project was performed on the 2016 winter peak, 2017 summer peak, and 2025 summer peak cases with identified system upgrades up to the DISIS-2015-001 queue position. As reactive power is required for GEN-2013-027, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the point of interconnection.

An analysis was conducted to determine the capacitive effects on the transmission system caused by the generator lead and collector system during periods of reduced generation. To offset these effects, the generating facility is required to provide reactive compensation of approximately 4 Mvar of inductive reactance during periods of reduced generation. Such compensation can be provided either by discrete reactive devices or by the generator itself if it possesses that capability.

Short Circuit analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases.

With the assumptions outlined in this report and with all the required network upgrades from the DISIS 2015-002 in place, GEN-2013-027 with the Vestas V126 GS 3.45MW wind turbine generators should be able to interconnect reliably to the SPP transmission grid. At this time, the change in wind turbine generator is not a Material Modification.

It should be noted that this study analyzed the requested modification to change generator technology, manufacturer, and layout. Power flow analysis was not performed. This study analyzed many of the most probable contingencies, but it is not an all-inclusive list and cannot account for every operational situation. It is likely that the customer may be required to reduce its generation output to 0 MW, also known as

curtailment, under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Nothing in this study should be construed as a guarantee of delivery or transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

Table of Contents

Revisio	on History 1		
Execut	ive Summaryi		
Table o	of Contentsiii		
1.	Introduction1		
2.	Facilities4		
3.	Stability Analysis		
	Model Preparation5		
	Disturbances5		
	Results		
	FERC LVRT Compliance		
4.	Power Factor Analysis 13		
	Model Preparation		
	Disturbances13		
	Results13		
5.	Reduced Wind Generation Analysis 14		
6.	Short Circuit Analysis		
	Results17		
7.	Conclusion		
Appen	dix A – 2016 Winter Peak Stability Plots		
Appen	dix B – 2017 Summer Peak Stability Plots 21		
Appen	dix C – 2025 Summer Peak Stability Plots 22		
Appen	dix D – Power Factor Analysis Results 23		
Appen	dix E – Reduced Wind Generation Analysis Results		
Appen	dix F – Short Circuit Analysis Results 25		

1. Introduction

The GEN-2013-027 Interconnection Customer has requested a modification to its Generator Interconnection Request to change its generators from Siemens 2.3 MW and 2.415 MW wind turbines to Vestas V126 GS 3.45MW wind turbines. Previously, sixty-one (61) Siemens 108m 2.3MW and four (4) Siemens 108m with Powerboost 2.415MW wind turbines. The requested change is shown in **Table 1-1**.

Table 1-1: Interconnection Request

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2013-027	148.35	43 x Vestas V126 GS G114 3.45MW	Tap Tolk (525531) – Yoakum (526935) 230kV, Needmore 230 kV

Other queued generation projects in the model are listed in Table 1-2.

			•
Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2001-033	180	Mitsubishi 1000 (524890, 524896)	San Juan Mesa 230kV (524885)
GEN-2001-036	80	Mitsubishi 1000 (583316)	Norton 115kV (524502)
GEN-2006-018	170	GENSAL (525841 A1, 525842 B1, 525843 C1)	Tuco 230kV (525830)
GEN-2006-026	502	GENROU (527901, 527902, 527903)	Hobbs 115kV(527891) Hobbs 230kV (527894)
GEN-2008-022	300	Vestas (577100, 577110, 577120)	Tap on Eddy County – Tolk 345kV line (G08-022-POI, 560007)
GEN-2010-006	180 Summer 205 Winter	GENROU (526333)	Jones_bus2 230kV(526337)
ASGI-2010-010	42	GENSAL (528331)	Lovington 115kV (528334)
ASGI-2010-020	30	GE 2.3MW (580088)	Tap LE-Tatum to LE-Crsroads 69kV (AS10-020-POI, 560360)
ASGI-2010-021	15	Mitsubishi MPS-1000A 1.0MW (580083)	Tap LE-Saundrtp to LE-Anderson 69kV (ASGI-021-POI, 560364)
GEN-2010-046	56	GENSAL (580043)	Tuco 230kV (525830)
ASGI-2011-001	27.3	Suzlon S97 2.1MW (579423)	Lovington 115kV (528334)
ASGI-2011-003	10	Sany 2.0MW (579433)	Hendricks 69kV (525943)
ASGI-2011-004	19.8	Sany 1.8MW (583193, 583196)	Crosby 69kV (525915)
GEN-2011-025	80	GE 1.79MW (581140)	Tap on Floyd County - Crosby County 115kV line (G11- 025-POI, 562004)
GEN-2011-045	180 Summer 205 Winter	GENROU (526334)	Jones_bus2 230kV (526337)
GEN-2011-046	23 Summer 27 Winter	GENROU (524471)	Quay County 115kV (524472)
GEN-2011-048	165 Summer 175 Winter	GENROU	Mustang 230kV (527151)

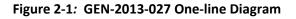
Table 1-2: Other Queued Interconnection Requests in the Model

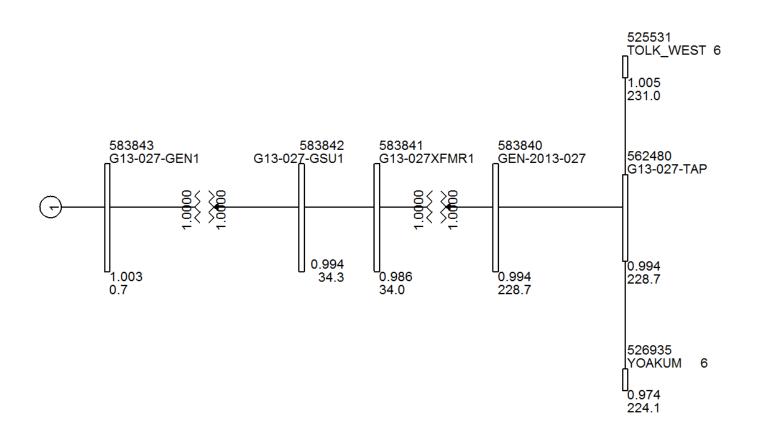
Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2012-001	61.2	CCWE 3.6MW (WT4) (599126)	Tap Grassland to Borden 230kV (526679)
ASGI-2012-002	18	Vestas 1.65MW V82 (583283)	Clovis 115kV (524808)
GEN-2012-020	478	GE 1.68MW (583343, 583346)	Tuco 230kV (525830)
GEN-2012-034	7 MW increase (Pgen=157MW)	GENROU (unit 4; 527164)	Mustang 230kV (527151)
GEN-2012-035	7 MW increase (Pgen=157MW)	GENROU (unit 5; 527165)	Mustang 230kV (527151)
GEN-2012-036	7 MW increase (Pgen=172MW Summer/185MW Winter)	GENROU (unit 6; 527166)	Mustang 230kV (527151)
GEN-2012-037	196 Summer 203 Winter	GENROU (525844)	Tuco 345kV (525832)
GEN-2013-016	191 Summer 203 Winter	GENROU (525845)	Tuco 345kV (525832)
ASGI-2013-002	18.4	Siemens 2.3MW VS (583613)	Tucumcari 115kV (524509)
ASGI-2013-003	18.4	Siemens 2.3MW VS (583623)	Clovis 115kV (524808)
ASGI-2013-005 (ASGI-2012-002)	19.8	Vestas V82 1.65MW (583283)	FE-Clovis 115kV (524808)
ASGI-2013-006	2.0	Gamesa G114 2MW (583813)	Erskine 115kV (526109)
GEN-2013-022	25.0	Solaron 500kW (583313)	Caprock 115kV (524486)
GEN-2013-027	150.0	Vestas V126 3.45MW (583843)	Tap on Yoakum to Tolk 230kV (562480)
GEN-2014-012 (Only in 2020SP, 2020WP, & 2025SP)	186 Summer 225 Winter	GENROU (528501)	Tap Hobbs (527894) to Andrews (528604) 230kV (Tap bus is 528611)
ASGI-2014-001	2.5	GE 107m 2.5MW (583816)	Erskine 69kV (526109)
GEN-2014-033	70	GE LV5 4.0MW Inverters and Schneider XC 680 0.68MVA Inverters (583953, 583956)	Chaves County 115kV
GEN-2014-034	70	GE LV5 4.0MW Inverters (583963)	Chaves County 115kV
GEN-2014-035	30	GE LV5 4.0MW Inverters (583973)	Chaves County 115kV
GEN-2014-047	40	AE 500NX 0.5 MW PV inverters (584263)	Tap Tolk - Eddy County (Crossroads) 345kV

A stability analysis was performed for the change in wind turbines. The analysis was performed on three (3) seasonal models including 2016 winter peak (16WP), the 2017 summer peak (17SP), and the 2025 summer peak (25SP) cases. These cases are modified versions of the 2015 model series of Model Development Working Group (MDWG) dynamic study models that included upgrades and Interconnection Requests through DISIS-2015-002.

The stability analysis determines the impacts of the new interconnecting project on the stability and voltage recovery of the nearby systems and the ability of the interconnecting project to meet FERC Order 661A. If problems with stability or voltage recovery are identified, the need for reactive compensation or system upgrades is investigated. The contingencies listed in **Table 3-1** were used in the stability analysis.

The power factor analysis determines the power factor at the point of interconnection (POI) for the wind interconnection projects for pre-contingency and post-contingency conditions. The contingencies used in the power factor analysis are a subset of the stability analysis contingencies shown in **Table 3-1**.


A reduced (low wind/no wind) generation analysis was performed to determine reactor inductive amounts to compensate for the capacitive effects on the transmission system caused by the interconnecting project's generator lead transmission line and collector systems during low or reduced wind conditions.


Short Circuit analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases. The results from the Short circuit analysis are shown in **Appendix F**.

Nothing in this System Impact Study constitutes a request for transmission service or grants the Interconnection Customer any rights to transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

2. Facilities

A one-line PSS/E slider drawing from the 16WP case is shown in **Figure 2-1** for GEN-2013-027. The POI is the new SPS Needmore 230 kV substation.

3. Stability Analysis

Transient stability analysis is used to determine if the transmission system can maintain angular stability and ensure bus voltages stay within planning criteria bandwidth during and after a disturbance while considering the addition of a generator interconnection request.

Model Preparation

Transient stability analysis was performed using modified versions of the 2015 series of Model Development Working Group (MDWG) dynamic study models including the 2016 winter peak, 2017 summer peak, and the 2025 summer peak seasonal models. The cases are then loaded with prior queued interconnection requests and network upgrades assigned to those interconnection requests. Finally the prior queued and study generation are dispatched into the SPP footprint. Initial simulations are then carried out for a no-disturbance run of twenty (20) seconds to verify the numerical stability of the model.

Disturbances

Thirty-one (31) contingencies were identified for use in this study and are listed in **Table 3-1**. These contingencies are faults at locations defined by SPP Generation Interconnection Staff. These contingencies include three-phase and single-phase N-1. Single-phase line faults were simulated by applying fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP current practice.

Except for transformer faults, the typical sequence of events for a three-phase and single-phase fault is as follows:

- 1. apply fault at particular location
- 2. continue fault for five (5) cycles, clear the fault by tripping the faulted facility
- 3. after an additional twenty (20) cycles, re-close the previous facility back into the fault
- 4. continue fault for five (5) additional cycles
- 5. trip the faulted facility and remove the fault

Transformer faults are typically modeled as three-phase faults, unless otherwise noted. The sequence of events for a transformer fault is as follows:

- 1. apply fault for five (5) cycles
- 2. clear the fault by tripping the affected transformer facility (unless otherwise noted there will be no reclosing into a transformer fault)

The SPP areas monitored during the stability analysis were:

- 520: American Electric Power (AEPW)
- 524: Oklahoma Gas and Electric Company (OKGE)
- 525: Western Farmers Electric Cooperative (WFEC)
- 526: Southwestern Public Service Company (SPS)

Table 3-1:	Contingencies	Evaluated
------------	---------------	-----------

Cont. No.	Contingency Name	Description
0	FLT_000_NOFAULT	No Fault Conditions
1	FLT_01_CROSSROADS7_EDDYCNTY7_345kV_3PH	 3 phase fault on Crossroads 345kV (527656) to Eddy County 345kV (527802) CKT 1, near Crossroads. a. Apply fault at the Crossroads 345kV bus. b. Clear fault after 5 cycles and trip the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
2	FLT_02_CROSSROADS7_TOLK7_345kV_3PH	 3 phase fault on Crossroads 345kV (527656) to Tolk 345kV (525549) CKT 1, Crossroads. a. Apply fault at the Crossroads 345kV bus. b. Clear fault after 5 cycles and trip the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
3	FLT_03_TOLKTAP6_TOLK7_230_345kV_3PH	 3 phase fault on the Tolk Tap 230kV (525543) to Tolk 345kV (525549) to Tolk 13.2kV (525537) XFMR CKT 1, near Tolk Tap 230kV. a. Apply fault at the Tolk Tap 230kV bus. b. Clear fault after 5 cycles and trip the faulted transformer.
4	FLT_04_G13027TAP_TOLKWEST6_230kV_3PH	 3 phase fault on the GEN-2013-027 (562480) to Tolk West (525531) 230 kV line, near GEN-2013-027. a. Apply fault at the GEN-2013-027 230kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
5	FLT_05_G13027TAP_YOAKUM6_230kV_3PH	 3 phase fault on the GEN-2013-027 (562480) to Yoakum (526935) 230 kV line, near GEN-2013-027. a. Apply fault at the GEN-2013-027 230kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
6	FLT_06_YOAKUM6_AMOCOSS6_230kV_3PH	 3 phase fault on the Yoakum (526935) to Amoco-SS (526460) 230 kV line, near Yoakum. a. Apply fault at the Yoakum 230kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Cont.	Contingency	Description
No.		
	FLT_07_YOAKUM6_OXYBRUTP6_230kV_3PH	3 phase fault on the Yoakum (526935) to OxyBru Tap
		(527010) 230 kV line, near Yoakum.
		a. Apply fault at the Yoakum 230kV bus.
7		b. Clear fault after 5 cycles by tripping the faulted line.c. Wait 20 cycles, and then re-close the line in (b) back into
		the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
	FLT_08_YOAKUM6_MUSTANG6_230kV_3PH	3 phase fault on the Yoakum (526935) to Mustang (527149)
		230 kV line, near Yoakum.
		a. Apply fault at the Yoakum 230kV bus.
8		b. Clear fault after 5 cycles by tripping the faulted line.
Ū		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and
		remove fault.
	FLT_09_YOAKUM6_G1579G1580T_230kV_3PH	3 phase fault on the Yoakum (526935) to G1579&G1580T
		(560059) 230 kV line, near Yoakum.
		a. Apply fault at the Yoakum 230kV bus.
9		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into
		the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and
		remove fault.
	FLT_10_YOAKUM6_YOAKUM3_230_115kV_3PH	3 phase fault on the Yoakum 230kV (526935) to Yoakum 115
		kV (526934)/13.2 kV (526931) transformer circuit #1, near
10		Yoakum.
		a. Apply fault at the Yoakum 230 kV bus.
		 b. Clear fault after 5 cycles by tripping the faulted transformer and remove fault.
	FLT_11_TOLKWEST6_ROSEVELTN6_230kV_3PH	3 phase fault on Tolk West 230kV (525531) to Roosevelt
		230kV (524909) CKT 2, near Tolk West.
11		a. Apply fault at the Tolk West 230kV bus.
		b. Clear fault after 5 cycles and trip the faulted line.
	FLT 12 TOLKWEST6 PLANTX6 230kV 3PH	3 phase fault on the Tolk West (525531) to Plant X (525481)
40		230 kV circuit #1 line, near Tolk West.
12		a. Apply fault at the Tolk West 230kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
	FLT_13_TOLK7_TOLKTAP6_345_230kV_3PH	3 phase fault on the Tolk 345 kV (525549) to Tolk Tap 230 kV
13		(525543)/ 13.2 kV (525537) transformer, near Tolk 345 kV.
		a. Apply fault at the Tolk 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted
		transformer.
	FLT_14_TOLKWEST6_LAMBCNTY6_230kV_3PH	3 phase fault on the Tolk West (525531) to Lamb Co (525637)
14		230 kV line, near Tolk West.
14		a. Apply fault at the Tolk West 230kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.

Cont. No.	Contingency Name	Description
15	FLT_15_TUCOINT7_BORDER7_345kV_3PH	 3 phase fault on the Tuco (525832) to Border (515458) 345kV line circuit 1, near Tuco. a. Apply fault at the Tuco 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
16	FLT_16_BORDER7_WWRDEHV7_345kV_3PH	 3 phase fault on the Border (515458) to Woodward (515375) 345kV line circuit 1, near Border. a. Apply fault at the Border 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
17	FLT_17_TUCOINT7_OKU7_345kV_3PH	 3 phase fault on the Tuco (525832) to OKU (511456) 345kV line circuit 1, near Tuco. a. Apply fault at the Tuco 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
18	FLT_18_TOLKWEST6_G13027TAPSB_230kV_1PH	 Single phase fault with stuck breaker on the Tolk West (525531) to GEN-2013-027 (562480) 230 kV line, near Tolk West. a. Apply fault at the Tolk West 230kV bus. b. Run 5 cycles, and then open GEN-2013-027 end of the faulted line. c. Run 10 cycles, and then clear the fault, disconnect Tolk West (525531) 230 kV bus, drop the Tolk 2 machine and disconnect the bus at 525562.
19	FLT_19_YOAKUM6_G13027TAPSB_230kV_1PH	 Single phase fault with stuck breaker on the Yoakum (526935) to GEN-2013-027 (562480) 230 kV line, near Yoakum. a. Apply fault at the Yoakum 230kV bus. b. At 5 cycles, open GEN-2013-027 end of the faulted line. c. At 15 cycles, clear the fault and open Yoakum end of the line in (b) and trip Yoakum (526935) to Yoakum 115 (526934)/13.2 kV (526931) transformer circuit #1.
20	FLT_20_YOAKUM6_YOAKUM3PO_230_115kV_3PH_16WP	 (Prior Outage) Yoakum (526935) – Amoco-SS (526460) 230 kV out of service then 3 phase fault on the Yoakum 230 kV (526935) to Yoakum 115 kV (526934)/13.2 kV (526931) transformer circuit #1, near Yoakum. Switch Yoakum (526935) – Amoco-SS (526460) out of service then solve. a. Apply fault at the Yoakum 230kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer and remove fault.

Cont. No.	Contingency Name	Description
21	FLT_21_YOAKUM6_AMOCOSS6SB_230kV_1PH	 Single phase fault with stuck breaker on the Yoakum (526935) to Amoco-SS (526460) 230 kV line, near Yoakum. a. Apply fault at the Yoakum 230kV bus. b. At 5 cycles, open Amoco-SS end of the faulted line. c. At 15 cycles, clear the fault and trip Yoakum 230 kV (526935) bus.
22	FLT_22_TOLKWEST6_ROSEVELTN6SB_230kV_1PH	 Single phase fault with stuck breaker on the Tolk West (525531) to Roosevelt N (524909) 230 kV line, near Tolk West. a. Apply fault at the Tolk West 230kV bus. b. Run 5 cycles, and then open Roosevelt N end of the faulted line. c. Run 10 cycles, and then clear the fault, disconnect Tolk West (525531) 230 kV bus, drop the Tolk 2 machine and disconnect the bus at 525562.
23	FLT_23_TOLKWEST6_PLANTX6SB_230kV_1PH	 Single phase fault with stuck breaker on the Tolk West (525531) to Plant X (525481) 230 kV circuit #1 line, near Tolk West. a. Apply fault at the Tolk West 230kV bus. b. Run 5 cycles, and then open Plant X end of the faulted line. c. Run 10 cycles, and then clear the fault, disconnect Tolk West (525531) 230 kV bus, drop the Tolk 2 machine and disconnect the bus at 525562.
24	FLT_24_TOLKWEST6_LAMBCNTY6SB_230kV_1PH	 Single phase fault with stuck breaker on the Tolk West (525531) to Lamb Co (525637) 230 kV line, near Tolk West. a. Apply fault at the Tolk West 230kV bus. b. Run 5 cycles, and then open Lamb Co end of the faulted line. c. Run 10 cycles, and then clear the fault, disconnect Tolk West (525531) 230 kV bus, drop the Tolk 2 machine and disconnect the bus at 525562.
25	FLT_25_TOLKEAST6_PLANTX6PO_230kV_3PH_16WP	 (Prior Outage) Tolk West (525531) – Plant X (525481) 230 kV circuit #1 out of service then 3 phase fault on the Tolk East 230 kV (525524) to Plant X (525481) 230 kV circuit #2, near Tolk East. Switch Tolk West (525531) – Plant X (525481) 230 kV circuit #1 out of service then solve. a. Apply fault at the Tolk East 230kV bus. b. Clear fault after 5 cycles by tripping the faulted line.
26	FLT_26_TOLKEAST6_PLANTX6SB_230kV_1PH	 Single phase fault with stuck breaker on the Tolk East (525524) to Plant X (525481) 230 kV line circuit #2, near Tolk East. a. Apply fault at the Tolk East 230kV bus. b. Run 5 cycles, and then open Plant X end of the faulted line. c. Run 10 cycles, and then clear the fault, disconnect Tolk East (525524) 230 kV bus, drop the Tolk 1 machine and disconnect the bus at 525561.

Cont.	Contingency	Description
No.	Name	
27	FLT_27_HOBBSINT6_ANDREWS6SB_230kV_1PH_16WP17S P (16WP-17SP Only)	 Single phase fault with stuck breaker (4K125) on the Hobbs (527894) to Andrews (528604) 230 kV circuit #1 line, near Hobbs. a. Apply fault at the Hobbs 230kV bus. b. At 5 cycles, open Andrews end of the faulted line. c. At 15 cycles, clear the fault and open Hobbs end of the line in (b) and trip Hobbs Plt (527903).
28	FLT_28_HOBBSINT6_GAINESGENTP6SB_230kV_1PH_20SP 25SP (25SP Only)	 Single phase fault with stuck breaker (4K125) on the Hobbs (527894) to Gaines Generation Tap (528611) 230 kV circuit #1 line, near Hobbs. a. Apply fault at the Hobbs 230kV bus. b. At 5 cycles, open Gaines Generation Tap end of the faulted line. c. At 15 cycles, clear the fault and open Hobbs end of the line in (b) and trip Hobbs Plt (527903).
29	FLT_29_HOBBSINT6_ANDREWS6SB_230kV_1PH_16WP17S P (16WP-17SP Only)	 Single phase fault with stuck breaker (4K120) on the Hobbs (527894) to Andrews (528604) 230 kV circuit #1 line, near Hobbs. a. Apply fault at the Hobbs 230kV bus. b. At 5 cycles, open Andrews end of the faulted line. c. At 15 cycles, clear the fault and open Hobbs end of the line in (b) and trip Hobbs (527894) to Cunnigham (527865) and Hobbs to G1579&G1580T (560059).
30	FLT_30_HOBBSINT6_GAINESGENTP6SB_230kV_1PH_20SP 25SP (25SP Only)	 Single phase fault with stuck breaker (4K120) on the Hobbs (527894) to Gaines Generation Tap (528611) 230 kV circuit #1 line, near Hobbs. a. Apply fault at the Hobbs 230kV bus. b. At 5 cycles, open Andrews end of the faulted line. c. At 15 cycles, clear the fault and open Hobbs end of the line in (b) and trip Hobbs (527894) to Cunnigham (527865) and Hobbs to G14-070-TAP (560018).
31	FLT_31_HOBBSINT6_G1579G1580T_230kV_3PH	 3 phase fault on the Hobbs (527894) G1579&G1580T (560059) 230 kV line, near Hobbs. a. Apply fault at the Hobbs 230kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-1: Contingencies Evaluated

Results

The stability analysis was performed and the results are summarized in **Table 3-2**. The stability analysis has shown that for the contingencies simulated the generators in the monitored areas remained stable and the system voltages recovered to acceptable levels.

The stability plots will be available upon customer request.

Table	3-2:	Results

	Contingency Number and Name	2016WP	2017SP	2025SP
0	FLT_000_NOFAULT	STABLE	STABLE	STABLE
1	FLT_01_CROSSROADS7_EDDYCNTY7_345kV_3PH	STABLE	STABLE	STABLE
2	FLT_02_CROSSROADS7_TOLK7_345kV_3PH	STABLE	STABLE	STABLE
3	FLT_03_TOLKTAP6_TOLK7_230_345kV_3PH	STABLE	STABLE	STABLE
4	FLT_04_G13027TAP_TOLKWEST6_230kV_3PH	STABLE	STABLE	STABLE
5	FLT_05_G13027TAP_YOAKUM6_230kV_3PH	STABLE	STABLE	STABLE
6	FLT_06_YOAKUM6_AMOCOSS6_230kV_3PH	STABLE	STABLE	STABLE
7	FLT_07_YOAKUM6_OXYBRUTP6_230kV_3PH	STABLE	STABLE	STABLE
8	FLT_08_YOAKUM6_MUSTANG6_230kV_3PH	STABLE	STABLE	STABLE
9	FLT_09_YOAKUM6_G1579G1580T_230kV_3PH	STABLE	STABLE	STABLE
10	FLT_10_YOAKUM6_YOAKUM3_230_115kV_3PH	STABLE	STABLE	STABLE
11	FLT_11_TOLKWEST6_ROSEVELTN6_230kV_3PH	STABLE	STABLE	STABLE
12	FLT_12_TOLKWEST6_PLANTX6_230kV_3PH	STABLE	STABLE	STABLE
13	FLT_13_TOLK7_TOLKTAP6_345_230kV_3PH	STABLE	STABLE	STABLE
14	FLT_14_TOLKWEST6_LAMBCNTY6_230kV_3PH	STABLE	STABLE	STABLE
15	FLT_15_TUCOINT7_BORDER7_345kV_3PH	STABLE	STABLE	STABLE
16	FLT_16_BORDER7_WWRDEHV7_345kV_3PH	STABLE	STABLE	STABLE
17	FLT_17_TUCOINT7_OKU7_345kV_3PH	STABLE	STABLE	STABLE
18	FLT_18_TOLKWEST6_G13027TAPSB_230kV_1PH	STABLE	STABLE	STABLE
19	FLT_19_YOAKUM6_G13027TAPSB_230kV_1PH	STABLE	STABLE	STABLE
20	FLT_20_YOAKUM6_YOAKUM3PO_230_115kV_3PH_16WP	STABLE	STABLE	STABLE
21	FLT_21_YOAKUM6_AMOCOSS6SB_230kV_1PH	STABLE	STABLE	STABLE
22	FLT_22_TOLKWEST6_ROSEVELTN6SB_230kV_1PH	STABLE	STABLE	STABLE
23	FLT_23_TOLKWEST6_PLANTX6SB_230kV_1PH	STABLE	STABLE	STABLE
24	FLT_24_TOLKWEST6_LAMBCNTY6SB_230kV_1PH	STABLE	STABLE	STABLE
25	FLT_25_TOLKEAST6_PLANTX6PO_230kV_3PH_16WP	STABLE	STABLE	STABLE
26	FLT_26_TOLKEAST6_PLANTX6SB_230kV_1PH	STABLE	STABLE	STABLE
27	FLT_27_HOBBSINT6_ANDREWS6SB_230kV_1PH_16WP17SP (16WP-17SP Only)	STABLE	STABLE	
28	FLT_28_HOBBSINT6_GAINESGENTP6SB_230kV_1PH_20SP2 5SP (25SP Only)			STABLE
29	FLT_29_HOBBSINT6_ANDREWS6SB_230kV_1PH_16WP17SP (16WP-17SP Only)	STABLE	STABLE	
30	FLT_30_HOBBSINT6_GAINESGENTP6SB_230kV_1PH_20SP2 5SP (25SP Only)			STABLE
31	FLT_31_HOBBSINT6_G1579G1580T_230kV_3PH	STABLE	STABLE	STABLE

FERC LVRT Compliance

FERC Order 661A places specific requirements on wind farms through its Low Voltage Ride Through (LVRT) provisions. For Interconnection Agreements signed after December 31, 2006, wind farms shall stay on line for faults at the POI that draw the voltage down at the POI to 0.0 pu. The faults listed below in **Table 3-3** were tested to meet Order 661A LVRT provisions. GEN-2013-027 was found to be in compliance with FERC Order 661A.

Contingency Number and Name	Description
FLT_04_G13027TAP_TOLKWEST6_230kV_3PH	3 phase fault on the GEN-2013-027 (562480) to Tolk West (525531) 230 kV
	line, near GEN-2013-027.
	a. Apply fault at the GEN-2013-027 230kV bus.
	b. Clear fault after 5 cycles by tripping the faulted line.
	c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
	d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
FLT_05_G13027TAP_YOAKUM6_230kV_3PH	3 phase fault on the GEN-2013-027 (562480) to Yoakum (526935) 230 kV
	line, near GEN-2013-027.
	a. Apply fault at the GEN-2013-027 230kV bus.
	b. Clear fault after 5 cycles by tripping the faulted line.
	c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
	d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-3: LVRT Contingencies

4. Power Factor Analysis

The power factor analysis was performed for each project included in this study and is designed to demonstrate the reactive power requirements at the point of interconnection (POI) using the current study upgrade cases. For all projects that require reactive power, the final requirement in the GIA will be the proforma 95% lagging to 95% leading at the POI.

Model Preparation

For each project included in this study, as well as previous queued projects modeled at the same POI, the projects were turned off for the power factor analysis. The projects were replaced by an equivalent generator located at the POI producing the total MW of the project at that POI and 0.0 Mvar capability.

An Mvar generator without limits was modeled at the interconnection project POI to hold a voltage schedule at the POI consistent with the greater of the voltage schedule in the base case or unity (1.0 pu) voltage.

Disturbances

Each N-1 three phase contingency evaluated in the Stability Analysis found in **Table 3-1** was also included in the determination of the power factor requirements.

Results

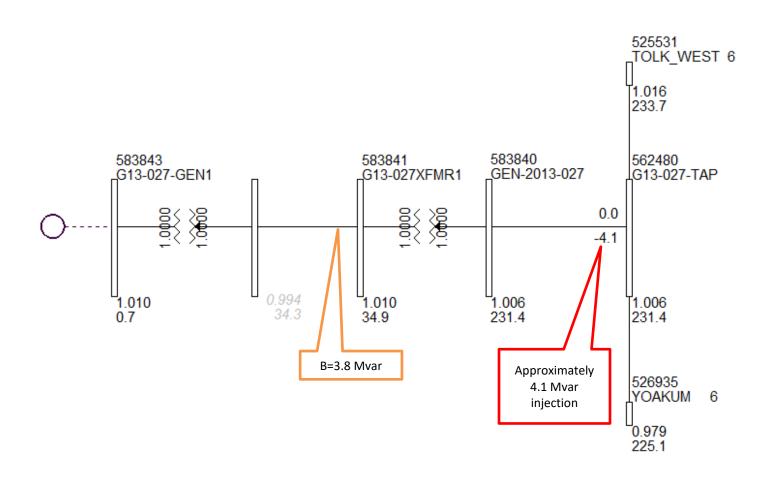
The power factor ranges are summarized in **Table 4-1** and the resultant ranges are shown **Table D-1**. The analysis showed that reactive power is required for the study project, the final requirement in the Generation Interconnection Agreement (GIA) for each project will be the pro-forma 95% lagging to 95% leading at the POI.

For analyzing power factor results a positive Q (Mvar) output indicates that the equivalent generator is supplying reactive power to the system, implying a lagging power factor. A negative Q (Mvar) output indicates that the equivalent generator is absorbing reactive power from the system, implying a leading power factor.

Request	Capacity (MW)	Point of Interconnection (POI)	Fuel	Generator	Lagging (providing Mvars)	Leading (absorbing Mvars)
GEN-2013-027	148.35	Tap Tolk - Yoakum 230kV, Needmore 138kV	Wind	43 x Vestas V126 GS 3.45MW	0.95	0.95

Table 4-1: Summary of Power Factor Analysis at the POI

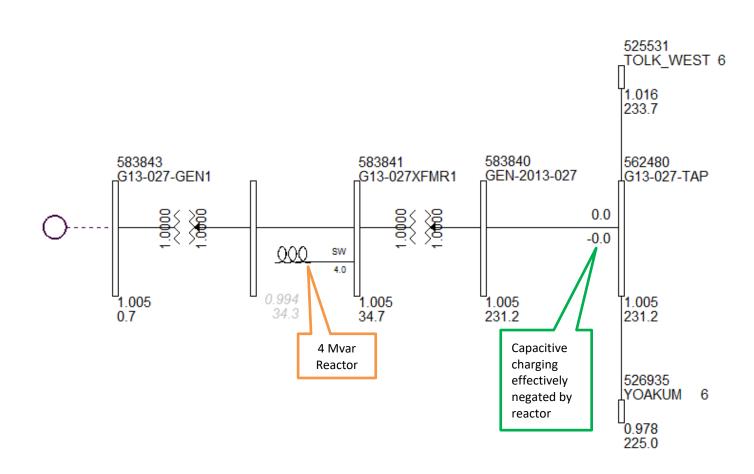
NOTE: As reactive power is required for the project, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the point of interconnection.


5. Reduced Wind Generation Analysis

A low wind analysis was performed for GEN-2013-027. SPP performed this low wind analysis to determine the capacitive charging current injected at the POI.

The project generators and capacitors (if any) were turned off in the base case. **Figure 5-1** shows the resulting reactive power injection (approximately 4 Mvar) at the POI that is due to the capacitance of the project's transmission lines and collector cables. Also, the figure shows how the capacitance is distributed throughout the project. In this impact restudy GEN-2013-027 is responsible for a 4 Mvar reactor needed to offset the capacitive effects of the collector system (3.8Mvar) and of the transmission lead (0.2Mvar) that connects into the transmission system under no/reduced wind generating conditions. The 4Mvar reactor will be required and would normally be installed on the low side of the 230/34.5kV transformer. The Interconnection Customer may use wind turbine manufacturing options for providing reactive power under no/reduced generation conditions.

Figure 5-2 shows a shunt reactor added at the GEN-2013-027 project substation 34.5 kV bus to bring the Mvar flow into the POI down to approximately zero.



Notes:

- 1. Amber box shows distribution of charging capacitance in the facility. The charging capacitance on the transmission line from the generation facility to the POI is negligible.
- 2. Red box shows the net effect of all the charging capacitances at the POI

Figure 5-2: GEN-2013-027 with generators turned off and shunt reactor added to the 34.5kV side of the customer substation

6. Short Circuit Analysis

The short circuit analysis was performed on the 2017 & 2025 Summer Peak power flow cases using the PSS/E ASCC program. Since the power flow model does not contain negative and zero sequence data, only three-phase symmetrical fault current levels were calculated at the point of interconnection up to and including five levels away.

Short Circuit Analysis was conducting using flat conditions with the following PSS/E ASCCC program settings:

- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFORMER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

Results

The results of the short circuit analysis are shown in **Appendix F, Table F-1** *GEN-2013-027 Short Circuit Analysis Results (2017SP)* and **Table F-2** *GEN-2013-027 Short Circuit Analysis Results (2025SP)*.

7. Conclusion

The GEN-2013-027 Interconnection Customer has requested a modification to its Generator Interconnection Request to change wind turbine generators for its project. Previously, it consisted of sixty-one (61) Siemens 108m 2.3MW and four (4) Siemens 108m with Powerboost 2.415MW wind turbines for a total of 149.96 MW. The requested change is for forty-three (43) Vestas V126 GulfStream (GS) 3.45MW wind for a total of 148.35 MW. The Point of Interconnection (POI) is the new Southwestern Public Service Company (SPS) Needmore 230 kV Substation.

The study models used were the 2016 winter, 2017 summer, and 2025 summer models that included Interconnection. Requests through the facility study queue at DISIS-2015-002. Additionally, DISIS-2015-001 models were also created from the DISIS-2015-002 models in order to provide a baseline verification for the turbine change. The baseline verification was used to identify Network Upgrade(s) triggered by the addition of the lower queued DISIS-2015-002 generation.

The restudy showed that the stability analysis has determined with all previously assigned Network Upgrades in service, generators in the monitored areas remained stable and within the precontingency, voltage recovery, and post fault voltage recovery criterion of 0.7pu to 1.2pu for the entire modeled disturbances. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

Power factor analysis for the study generation project was performed on the 2016 winter peak, 2017 summer peak, and 2025 summer peak cases with identified system upgrades up to the DISIS-2015-001 queue position. As reactive power is required for GEN-2013-027, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the point of interconnection.

An analysis was conducted to determine the capacitive effects on the transmission system caused by the generator lead and collector system during periods of reduced generation. To offset these effects, the generating facility is required to provide reactive compensation of approximately 4 MVAR of inductive reactance during periods of reduced generation. Such compensation can be provided either by discrete reactive devices or by the generator itself if it possesses that capability.

Short Circuit analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases.

It should be noted that this study analyzed the requested modification to change generator technology, manufacturer, and layout. Power flow analysis was not performed. This study analyzed many of the most probable contingencies, but it is not an all-inclusive list and cannot account for every operational situation. It is likely that the customer may be required to reduce its generation output to 0 MW, also known as curtailment, under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Nothing in this study should be construed as a guarantee of delivery or transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

Appendix A – 2016 Winter Peak Stability Plots

(Available on request)

Appendix B – 2017 Summer Peak Stability Plots

(Available on request)

Appendix C – 2025 Summer Peak Stability Plots

(Available on request)

Appendix D – Power Factor Analysis Results

Table D-1: GEN-2013-027 Power Factor Analysis Results

	Leading power factor is absorbing vars; Lagging power factor is providing vars									
	GEN-2013-027 POI: Leonard 138 kV (561000) Power at POI (MW): 148.35	2016 Winter Peak2017 Summer PeakPOI Voltage = 1.014 puPOI Voltage = 1.015 pu				2025 Summer Peak POI Voltage = 1.013 pu				
	Contingency Name	Mvars at POI	Power Fa	ictor	Mvars at POI	Power Fa	actor	Mvars at POI	Power F	actor
0	FLT_00_NoFault	-19.1175	0.991799	LEAD	4.254371	0.999589	LAG	2.273539	0.999883	LAG
1	FLT_01_CROSSROADS7_EDDYCNTY7_345kV	16.50787	0.993866	LAG	37.23049	0.969922	LAG	29.92099	0.98026	LAG
2	FLT_02_CROSSROADS7_TOLK7_345kV	-20.3464	0.990725	LEAD	2.559471	0.999851	LAG	1.880084	0.99992	LAG
3	FLT_03_TOLKTAP6_TOLK7_230_345kV	-20.3527	0.99072	LEAD	2.554942	0.999852	LAG	1.877785	0.99992	LAG
4	FLT_04_G13027TAP_TOLKWEST6_230kV	4.311256	0.999578	LAG	16.09273	0.994168	LAG	2.116214	0.999898	LAG
5	FLT_05_G13027TAP_YOAKUM6_230kV	-62.3837	0.921812	LEAD	-44.7708	0.957353	LEAD	-38.3462	0.968179	LEAD
6	FLT_06_YOAKUM6_AMOCOSS6_230kV	-13.4913	0.99589	LEAD	6.1329	0.999147	LAG	0.221952	0.999999	LAG
7	FLT_07_YOAKUM6_OXYBRUTP6_230kV	-19.1331	0.991785	LEAD	4.459285	0.999549	LAG	1.676351	0.999936	LAG
8	FLT_08_YOAKUM6_MUSTANG6_230kV	-18.6211	0.992214	LEAD	5.009104	0.99943	LAG	2.117167	0.999898	LAG
9	FLT_09_YOAKUM6_G1579&G1580T_230kV	-11.7104	0.996899	LEAD	24.54577	0.986587	LAG	11.68639	0.996912	LAG
10	FLT_10_YOAKUM6_YOAKUM3_230_115kV	-20.4295	0.990651	LEAD	3.41293	0.999735	LAG	1.85363	0.999922	LAG
11	FLT_11_TOLKWEST6_ROSEVELTN6_230kV	-18.7528	0.992105	LEAD	4.994177	0.999434	LAG	3.220461	0.999764	LAG
12	FLT_12_TOLKWEST6_PLANTX6_230kV	-17.3514	0.993229	LEAD	5.986191	0.999187	LAG	4.236259	0.999593	LAG
13	FLT_13_TOLK7_TOLKTAP6_345_230kV	-20.3527	0.99072	LEAD	2.554942	0.999852	LAG	1.877785	0.99992	LAG
14	FLT_14_TOLKWEST6_LAMBCNTY6_230kV	-16.012	0.994226	LEAD	10.8327	0.997345	LAG	6.91151	0.998916	LAG
15	FLT_15_TUCOINT7_BORDER7_345kV	-20.7488	0.99036	LEAD	3.221926	0.999764	LAG	1.425043	0.999954	LAG
16	FLT_16_BORDER7_WWRDEHV7_345kV	-21.1302	0.990008	LEAD	2.882341	0.999811	LAG	0.722355	0.999988	LAG
17	FLT_17_TUCOINT7_OKU7_345kV	-21.9178	0.989261	LEAD	2.458675	0.999863	LAG	1.044649	0.999975	LAG
18	FLT_29_HOBBSINT6_G1579&G1580T_230kV	-13.1535	0.996092	LEAD	23.04538	0.988148	LAG	10.02157	0.997726	LAG

Appendix E – Reduced Wind Generation Analysis Results

(One-line diagram moved to main body of report)

8:43

Appendix F - Short Circuit Analysis Results

Table F-1: GEN-2013-027 Short Circuit Analysis Results (2017SP)

PSS®E ASCC SHORT CIRCUIT CURRENTS THU, AUG 17 2017 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 17S WITH MMWG 15S, MRO 16W TOPO/16S PROF, SERC 16S

OPTIONS USED:

- FLAT CONDITIONS

- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

		THREE PHAS	E FAULT
X BUSX		/I+/	AN(I+)
562480 [G13-027-TAP 230.00]	AMP	8842.8	-83.13
525531 [TOLK WEST 6230.00]	AMP	25294.5	-86.15
526935 YOAKUM 6230.00	AMP	11670.9	-83.68
583840 [GEN-2013-027230.00]	AMP	8401.7	-83.23
524909 [ROSEVELT N 6230.00]	AMP	8577.2	-82.08
525481 [PLANT X 6230.00]	AMP	21882.5	-85.22
525543 TOLK TAP 6230.00	AMP	25294.5	-86.15
525637 [LAMB_CNTY 6230.00]	AMP	5315.1	-81.86
526460 [AMOCO_SS 6230.00]	AMP	9102.1	-82.55
526934 [YOAKUM 3115.00]	AMP	14679.4	-82.04
527010 [OXYBRU_TP 6230.00]	AMP	9858.0	-83.56
527149 [MUSTANG 6230.00]	AMP	10292.0	-84.21
560059 [G1579&G1580T230.00]	AMP	8250.8	-83.57
524623 [DEAFSMITH 6230.00]	AMP	7681.3	-80.79
524770 [PLSNT_HILL 6230.00]	AMP	5969.0	-81.80
524908 [ROOSEVELT 3115.00]	AMP	10053.3	-81.83
524915 [SW_4K33 6230.00]	AMP	8577.2	-82.08
525461 [NEWHART 6230.00]	AMP	10656.8	-81.87
525480 [PLANT_X 3115.00]	AMP	20791.2	-84.02
525524 [TOLK_EAST 6230.00]	AMP	25294.5	-86.15
525549 [TOLK 7345.00]	AMP	6849.6	-87.53
525636 [LAMB_CNTY 3115.00]	AMP	8474.2	-80.19
526435 [SUNDOWN 6230.00]	AMP	10449.2	-82.64
526784 [AMOCOWASSON6230.00]	AMP	9635.2	-83.83
526792 [PRENTICE 3115.00]	AMP	5769.2	-75.67
526928 [PLAINS_INT 3115.00]	AMP	9218.3	-78.07
527041 [ARCO_TP 3115.00]	AMP	11998.5	-78.94
527146 [MUSTANG 3115.00]	AMP	19877.1	-83.79
527151 [GS-MUSTANG 6230.00]	AMP	10292.0	-84.21
527194 [LG-PLSHILL 3115.00]	AMP	7200.0	-76.35
527276 [SEMINOLE 6230.00]	AMP	6103.1	-82.34
527894 [HOBBS_INT 6230.00]	AMP	14489.3	-86.70
523959 [POTTER_CO 6230.00]	AMP	20123.4	-84.70
524267 [BUSHLAND 6230.00]	AMP	9606.8	-82.93
524622 [DEAFSMITH 3115.00]	AMP	11922.6	-79.72
524768 [PLSNT_HILL 3115.00]	AMP	9576.8	-80.71
524822 [CURRY 3115.00]	AMP	10230.1	-79.53
524875 [OASIS 6230.00]	AMP	7157.1	-81.92
524911 [ROSEVELT_S 6230.00]	AMP	8577.2	-82.08

524924	[PORTALES 3115.00]		7114.7	-78.83
525019	[EMU&VLY_TP 3115.00]	AMP	5083.7	-76.00
525056	[BC-EARTH 3115.00]		8736.1	-76.58
525213	[SWISHER 6230.00]		9977.4	-82.27
525446	[SPGLAKE_TP3 115.00]	AMP	10505.2	-77.67
525454	[HALE_CNTY 3115.00]	AMP	10060.2	-73.67
525460	[NEWHART 3115.00]	AMP	14949.2	-81.55
525635	[LAMB_CNTY 269.000]	AMP	5909.9	-85.13
525830	[TUCO_INT 6230.00]	AMP	19165.6	-84.58
526020	[HOCKLEY 3115.00]	AMP	5464.0	-76.21
526434	[SUNDOWN 3115.00]	AMP	11198.3	-80.92
526525	[WOLFFORTH 6230.00]	AMP	12729.9	-83.31
526736	[TERRY_CNTY 3115.00]	AMP	10509.2	-77.12
526944	[LG-PLAINS 3115.00]	AMP	7550.9	-77.18
527018	[BENNETT 3115.00]	AMP	12082.1	-78.97
527047	[OXY_WILRD1 3115.00]	AMP	9800.2	-77.87
527062	[SHELL_CO2 3115.00]	AMP	14455.7	-80.20
527130	[DENVER N 3115.00]	AMP	18662.7	-82.33
527136	[DENVER_S 3115.00]	AMP	18662.7	-82.33
527202	[SEAGRAVES 3115.00]	AMP	8140.9	-76.70
527275	[SEMINOLE 3115.00]	AMP	10367.3	-80.38
527656	[CROSSROADS 7345.00]	AMP	5222.7	-86.02
527865	[CUNNINHAM 6230.00]		14213.2	-86.69
527891	[HOBBS INT 3115.00]		28205.8	-85.96
528604	[ANDREWS 6230.00]	AMP	5704.4	-83.99
528626	[LE-PLNSINT 269.000]	AMP	4300.1	-82.89
523309	[MOORE_CNTY 6230.00]	AMP	6685.6	-82.73
523869	[CHAN/TASCOS6230.00]	AMP	3839.6	-82.07
523961	[POTTER CO 7345.00]	AMP	7410.1	-86.52
523979	[HARRNG_EST 6230.00]		25818.6	-86.32
524010	[ROLLHILLS 6230.00]		19166.6	-84.79
524266	[BUSHLAND 3115.00]		9314.7	-83.80
524290	[WILDOR2_JUS6230.00]	AMP	6590.0	-83.45
524502	[NORTON 3115.00]	AMP	2715.0	-80.50
524567	[NE HEREFORD3115.00]	AMP	9537.9	-78.34
524597	[PANDAHFD 3115.00]	AMP	8335.8	-74.65
524606	[HEREFORD 3115.00]	AMP	10687.3	-78.73
524669	[DS-#20 3115.00]	AMP	4764.9	-68.32
524734	[DS-#21 3115.00]	AMP	10765.2	-78.36
524746	[CASTRO_CNTY3115.00]	AMP	11600.5	-78.94
524764	[NORRIS TP 3115.00]	AMP	10204.7	-79.52
524773	[E_CLOVIS 3115.00]	AMP	8244.0	-78.55
	[N_CLOVIS_TP3115.00]		7015.1	-78.62
524821	[CURRY 269.000]		4312.4	-85.63
	[FE-HOLLAND 3115.00]		8485.1	-79.25
	[FE-CLOVIS2 3115.00]		9716.0	-79.30
524874			9361.3	-81.67
	[SN_JUAN_TAP6230.00]		4609.0	-83.05
	[PORTALES 269.000]		7050.4	-82.41
524935	[KILGORE 3115.00]		5570.3	-77.66
	[EMULESH&VLY3115.00]		4718.2	-75.80
	[BAILEYCO 3115.00]		4864.3	-75.99
	[BC-KELLEY 3115.00]		8328.8	-76.40
	[HART_INDUST3115.00]		7540.1	-76.43
	[KRESS_INT 3115.00]		11023.2	-79.49
	[SWISHER 3115.00]		10173.6	-81.31
	[COX 3115.00]		5850.2	-71.99
525393	[SPRINGLAKE 3115.00]		9343.6	-77.52
	[LAMTON 3115.00]		7754.9	-75.23
	[LC-S_OLTON 3115.00]		7393.0	-75.43
525453	[HALE CNTY 269.000]		6888.5	-82.63
	[W_LITTLFLD 269.000]		2970.9	-73.96
	[LTFLD_S&CTY269.000]		4177.3	-71.85
	[LC-LITTLFLD269.000]		4939.3	-83.14

525687	[LC-LUMSCHAP	269.000]	AMP	4618.8	-79.94
525828	[TUCO_INT	3115.00]	AMP	18995.0	-82.75
525832	[TUCO_INT	7345.00]	AMP	10079.1	-85.98
525840	[ANTELOPE_1	6230.00]	AMP	19024.7	-84.59
526019	[HOCKLEY	269.000]	AMP	5131.3	-81.73
526036	[LC-OPDYKE	3115.00]	AMP	5764.7	-76.42
526161	[CARLISLE	6230.00]	AMP	10295.2	-83.06
526269	[LUBBCK_STH	6230.00]	AMP	16981.0	-85.25
526337	[JONES	6230.00]	AMP	19159.6	-86.25
526352	[LEHMAN	3115.00]	AMP	5961.0	-77.51
526424	[PACIFIC	3115.00]	AMP	9502.5	-79.54
526445	AMOCO TP	3115.00]	AMP	10560.7	-80.10
526491	LG-CLAUENE	3115.00	AMP	8904.8	-77.06
526524	- [WOLFFORTH	3115.00]	AMP	11331.4	-81.75
526735	TERRY CNTY	269.000	AMP	6991.5	-84.14
527036	SHELL C2	3115.00	AMP	12005.5	-80.17
527046	OXY_WILRD2	3115.00	AMP	9778.2	-77.86
527051	ODC TP	3115.00	AMP	12096.4	-78.97
527080	EL PASO	3115.00	AMP	14277.3	-80.02
527105	SAN ANDS TP	-	AMP	15021.1	-80.13
527125	DENVER CTY	269.000	AMP	8386.1	-87.00
527201	SEAGRAVES	269.000]	AMP	5303.3	-83.35
527238	[ROZ	3115.00	AMP	8560.2	-79.16
527242	AMERADA	3115.00	AMP	8649.8	-79.22
527262	SULPHUR	3115.00	AMP	5546.5	-75.37
527286	XTO RUSSEL	3115.00	AMP	9605.2	-75.02
527322	GAINES	3115.00	AMP	8071.6	-77.36
527340	DOSS	3115.00	AMP	6757.6	-77.45
527800	EDDY SOUTH	6230.00	AMP	7095.7	-83.44
527802	EDDY CNTY	7345.001	AMP	4026.3	-84.90
527864	CUNNINHAM	3115.00	AMP	24957.4	-84.27
527963	-	6230.00]	AMP	6115.3	-82.69
528333	LE-WEST SUB	-	AMP	8426.7	-81.60
528355	[MADDOX	3115.00]	AMP	24199.8	-85.05
528433	NEW NHOBBS	3115.00]	AMP	7775.8	-73.82
528435	MILLEN	3115.00]	AMP	11035.1	-74.47
528602	ANDREWS	3115.00	AMP	7719.9	-82.01
528740	LE-PLANS TP	-	AMP	3573.3	-80.02
560050	G15-031-TAP	-	AMP	8528.0	-82.19
560058	G15-077-TAP	-	AMP	8041.0	-76.46
577103	GEN-2008-02	-	AMP	4960.1	-85.92
583340	[GEN-2012-02	-	AMP	8643.8	-84.17
584260	[GEN-2014-04	-	AMP	4249.5	-83.87
599955	[PNM-DC6	230.00]	AMP	8577.2	-82.08
	-				

Table F-2: GEN-2013-027 Short Circuit Analysis Results (2025SP)

PSS®E ASCC SHORT CIRCUIT CURRENTS 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 2025S WITH MMWG 2024S, MRO & SERC 2025 SUMMER

OPTIONS USED:

- FLAT CONDITIONS
 - BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
 - GENERATOR P=0, Q=0
 - TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
 - LINE CHARGING=0.0 IN +/-/0 SEQUENCE
 - LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
 - LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
 - DC LINES AND FACTS DEVICES BLOCKED
 - TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

THU, AUG 17 2017 8:43

		т	HREE PHASE	FAULT
X BUS	X		/I+/	AN(I+)
562480 [G13-027-TAP 230	.00] A	MP	9007.4	-83.10
525531 [TOLK_WEST 6230	.00] A	MP	26092.0	-86.11
526935 [YOAKUM 6230	.00] A	MP	15294.9	-84.79
583840 [GEN-2013-027230	-	MP	8549.5	-83.20
524909 [ROSEVELT_N 6230		MP	8709.0	-82.04
525481 [PLANT_X 6230	-		23136.3	-85.29
525543 [TOLK_TAP 6230	-		26092.0	-86.11
525637 [LAMB_CNTY 6230	-	MP	5529.7	-82.22
526460 [AMOCO_SS 6230	-	MP	9522.2	-82.61
526934 [YOAKUM 3115			15965.7	-82.65
		MP	8477.5	-86.28
527010 [OXYBRU_TP 6230	-		11988.4	-84.20
527149 [MUSTANG 6230	-		12048.0	-84.63
560059 [G1579&G1580T230	-	MP	8951.1	-83.41
524623 [DEAFSMITH 6230	-	MP	7765.4	-81.18
524770 [PLSNT_HILL 6230 524908 [ROOSEVELT 3115	-	MP MP	6055.0 10209.1	-81.77
524908 [ROOSEVELT 3115 524915 [SW 4K33 6230		MP	8709.0	-81.75 -82.04
525461 [NEWHART 6230	-		10763.7	-82.04
525480 [PLANT X 3115	-		26550.5	-85.01
525524 [TOLK EAST 6230			26092.0	-86.11
525549 [TOLK 7345	-	MP	6932.9	-87.53
525636 [LAMB_CNTY 3115]		MP	9649.1	-80.29
525832 [TUCO INT 7345	-		12275.3	-86.20
526435 [SUNDOWN 6230	-		10885.6	-82.68
526784 [AMOCOWASSON6230	-		11329.6	-84.27
526792 [PRENTICE 3115	-	MP	5881.1	-75.63
526928 [PLAINS INT 3115	-	MP	9634.1	-78.15
527041 [ARCO TP 3115	-	MP	12556.5	-78.95
527146 MUSTANG 3115	.00] A	MP	21048.0	-83.90
527151 [GS-MUSTANG 6230	.00] A	MP	12048.0	-84.63
527194 [LG-PLSHILL 3115	.00] A	MP	7392.4	-76.30
527276 [SEMINOLE 6230	.00] A	MP	6557.5	-82.40
527894 [HOBBS_INT 6230	.00] A	MP	18652.1	-86.99
527896 [HOBBS_INT 7345	.00] A	MP	8201.1	-86.76
		MP	5100.7	-84.33
515458 [BORDER 7345	-	MP	5055.5	-86.21
523959 [POTTER_CO 6230	-		20179.7	-84.69
524267 [BUSHLAND 6230	-	MP	9628.8	-82.95
524622 [DEAFSMITH 3115	-		12155.4	-80.48
524768 [PLSNT_HILL 3115		MP	9808.4	-80.59
E	.00] A		10485.2	-79.47
-	.00] A		7260.0	-81.88
524911 [ROSEVELT_S 6230 524924 [PORTALES 3115			8709.0	-82.04
525019 [EMU&VLY TP 3115	-	MP MP	7189.6 6422.1	-78.74 -77.12
525056 [BC-EARTH 3115	-	MP	9135.5	-76.32
-	.00] A		10137.4	-82.24
525446 [SPGLAKE_TP3 115	-		11477.2	-77.38
525454 [HALE CNTY 3115	-		10242.0	-73.51
525460 [NEWHART 3115			15076.2	-81.48
525608 [NEW_AMHERST3115	-		5308.3	-80.60
525614 [W_LITLFLDTP3115		MP	8225.5	-77.65
525635 [LAMB_CNTY 269.0	-	MP	6225.5	-85.43
525830 [TUCO_INT 6230	-		22220.0	-85.13
	.00] A	MP	5611.0	-76.05
526434 SUNDOWN 3115	.00] A	MP	11455.4	-80.87
526525 [WOLFFORTH 6230			13451.1	-83.45
526736 [TERRY_CNTY 3115	-		10747.0	-77.04
	.00] A		7801.4	-77.19
527018 [BENNETT 3115	.00] A	MP	12643.0	-78.98

F07047		F 001		10160 0	77.04
527047	[OXY_WILRD1 311	-	AMP	10169.3	-77.84
527062		5.00]	AMP	15155.9	-80.19
527130		5.00]	AMP	19687.4	-82.34
527136		5.00]	AMP	19687.4	-82.34
527202		5.00]	AMP	8362.8	-76.63
527275	-	5.00]	AMP	10827.6	-80.42
527656	-	5.00]	AMP	5294.8	-86.02
527865	-	80.00]	AMP	17020.5	-86.67
527891		.5.00]	AMP	32425.5	-85.85
527965	L .	5.00]	AMP	5518.0	-84.90
528611	[GAINESGENTP623	-	AMP	9822.3	-85.44
528626		.000]	AMP	4349.8	-82.82
511468	-	5.00]	AMP	12244.9	-84.70
515375	[WWRDEHV7 34	5.00]	AMP	18268.8	-86.03
523309		80.00]	AMP	6692.2	-82.73
523869	[CHAN/TASCOS623	-	AMP	3841.5	-82.07
523961		5.00]	AMP	7424.0	-86.52
523979		80.00]	AMP	25904.0	-86.36
524010	L .	0.00]	AMP	19215.9	-84.80
524266	[BUSHLAND 311	5.00]	AMP	9323.5	-83.80
524290	[WILDOR2_JUS623	0.00]	AMP	6599.8	-83.46
524502	[NORTON 311	5.00]	AMP	3310.9	-81.49
524567	[NE_HEREFORD311	5.00]	AMP	9687.9	-78.92
524597	[PANDAHFD 311	5.00]	AMP	9054.6	-80.09
524606	[HEREFORD 311	5.00]	AMP	10872.8	-79.38
524669	[DS-#20 311	5.00]	AMP	4804.7	-68.23
524734	[DS-#21 311	5.00]	AMP	10876.9	-78.29
524746	[CASTRO_CNTY311	5.00]	AMP	11734.2	-78.85
524764	[NORRIS_TP 311	5.00]	AMP	10458.2	-79.45
524773	[E_CLOVIS 311	5.00]	AMP	8408.9	-78.44
524776	[N_CLOVIS_TP311	5.00]	AMP	7124.9	-78.50
524821	[CURRY 269	.000]	AMP	4339.1	-85.66
524831	[FE-HOLLAND 311	5.00]	AMP	8661.0	-79.14
524838	FE-CLOVIS2 311	5.00]	AMP	9945.4	-79.23
524874	[OASIS 311	5.00]	AMP	9489.6	-81.59
524885	[SN_JUAN_TAP623	0.00]	AMP	4655.9	-83.00
524923	[PORTALES 269	.000]	AMP	7094.6	-82.38
524935	[KILGORE 311	5.00]	AMP	5905.7	-77.79
524977	[MARKET_ST 311	5.00]	AMP	5477.7	-77.42
525018	[EMULESH&VLY311	5.00]	AMP	5850.2	-76.77
525028	[BAILEYCO 311	5.00]	AMP	6363.0	-77.42
525050	[BC-KELLEY 311	5.00]	AMP	8582.7	-76.19
525124	[HART_INDUST311	5.00]	AMP	7600.4	-76.33
525192	[KRESS_INT 311	5.00]	AMP	11120.0	-79.42
525212	[SWISHER 311	5.00]	AMP	10254.1	-81.26
525326	[COX 311	5.00]	AMP	5891.5	-71.89
525393	[SPRINGLAKE 311	5.00]	AMP	10104.7	-77.25
525414	[LAMTON 311	5.00]	AMP	7936.2	-75.05
525440	[LC-S_OLTON 311	5.00]	AMP	7644.3	-75.21
525453	[HALE_CNTY 269	.000]	AMP	6939.8	-82.63
525594	[SUDANRURAL 311	5.00]	AMP	4771.7	-80.29
525607	[NEW_AMHERST269	.000]	AMP	3221.7	-85.76
525615	[W_LITTLFLD 311	5.00]	AMP	7690.4	-76.65
525620	[LTFLD_S&CTY269		AMP	4331.9	-71.57
525650	[LC-LITTLFLD269	.000]	AMP	5158.5	-83.30
525687	[LC-LUMSCHAP269	.000]	AMP	4810.4	-79.95
525828	[TUCO_INT 311	5.00]	AMP	19868.4	-83.04
525840	[ANTELOPE_1 623	0.00]	AMP	22049.7	-85.14
526019		.000]	AMP	5208.7	-81.72
526036	[LC-OPDYKE 311	5.00]	AMP	5895.8	-76.27
526161	[CARLISLE 623	0.00]	AMP	13248.8	-83.80
526269	[LUBBCK_STH 623	0.00]	AMP	18797.0	-85.28
526337		0.00]	AMP	20791.8	-86.16
526352	[LEHMAN 311	5.00]	AMP	6038.6	-77.45

526424	[PACIFIC	3115.00]	AMP	9684.7	-79.47
526445	[AMOCO_TP	3115.00]	AMP	10788.7	-80.04
526491	[LG-CLAUENE	3115.00]	AMP	9068.8	-76.98
526524	[WOLFFORTH	3115.00]	AMP	11595.6	-81.87
526735	[TERRY_CNTY	269.000]	AMP	7053.8	-84.17
527036	[SHELL_C2	3115.00]	AMP	12399.1	-80.06
527046	[OXY_WILRD2	3115.00]	AMP	10145.6	-77.83
527051	[ODC_TP	3115.00]	AMP	12657.9	-78.99
527080	[EL_PASO	3115.00]	AMP	14946.1	-79.99
527105	[SAN_ANDS_TF	93115.00]	AMP	15701.5	-80.05
527125	[DENVER_CTY	269.000]	AMP	8505.0	-87.07
527201	[SEAGRAVES	269.000]	AMP	5358.8	-83.39
527238	[ROZ	3115.00]	AMP	8871.6	-79.15
527242	[AMERADA	3115.00]	AMP	8967.9	-79.21
527262	[SULPHUR	3115.00]	AMP	5632.7	-75.30
527286	[XTO_RUSSEL	3115.00]	AMP	9850.9	-74.72
527322	[GAINES	3115.00]	AMP	8298.6	-77.23
527340	[DOSS	3115.00]	AMP	6934.3	-77.37
527800	[EDDY_SOUTH	6230.00]	AMP	7678.2	-83.31
527802	[EDDY_CNTY	7345.00]	AMP	4208.1	-84.95
527864	[CUNNINHAM	3115.00]	AMP	29286.6	-84.51
527962	[POTASH_JCT	3115.00]	AMP	14128.8	-83.23
527963	[POTASH_JCT	6230.00]	AMP	6852.0	-84.05
528027	[RDRUNNER	7345.00]	AMP	3763.4	-84.17
528185	[N_LOVING	7345.00]	AMP	4392.3	-84.47
528333	[LE-WEST_SUE	33115.00]	AMP	8738.0	-81.19
528355	[MADDOX	3115.00]	AMP	27408.5	-84.99
528433	[NEW_NHOBBS	3115.00]	AMP	7972.9	-73.45
528435	[MILLEN	3115.00]	AMP	11569.2	-73.87
528604	[ANDREWS	6230.00]	AMP	6912.6	-84.42
528610	[GAINES_GEN	6230.00]	AMP	8510.8	-85.63
528740	[LE-PLANS_TF	269.000]	AMP	3610.0	-79.84
560050	[G15-031-TAF	230.00	AMP	8630.0	-82.17
560058	[G15-077-TAF	9 115.00	AMP	8175.9	-76.38
577103	[GEN-2008-02	22345.00]	AMP	5022.4	-85.91
583090	[G1149&G1504	1 345.00]	AMP	4623.2	-86.07
583340		20230.00]	AMP	9103.3	-84.27
584260	[GEN-2014-04	17345.00]	AMP	4297.1	-83.84
599955	PNM-DC6	230.00]	AMP	8709.0	-82.04
		-			