Interim Operational Impact Study for Generation Interconnection Request

000000

0-0-0

000

GEN-2012-013

July, 2012 Generation Interconnection

Executive Summary

<OMITTED TEXT> (Customer) has requested an Interim Operation Impact Study under the Southwest Power Pool Open Access Transmission Tariff (OATT) for interconnection for a total of 99 MW of Wind Turbine generation within the balancing authority of Sunflower Electric Power (SUNC) in Gray County, Kansas. Customer has requested this Interim Operation Study to determine the impacts of interconnecting its generating facility to the transmission system before such time that SPP can complete the required interconnection studies. Interim Operation Studies are conducted under GIA Section 11A.

This interim Operation Impact Study consists of conducting two impact analyses, one being for system conditions on December 31, 2013 and the second for system conditions on December 31, 2014

This study assumed that only the higher queued projects identified in Table 3A or Table 3B of this study might go into service before the completion of all Network Upgrades might be identified in DISIS-2012-002. If any additional generation projects not identified in Table 2 but with queue priority equal to or over the study projects, listed in Table 4A or Table 4B, request to go into commercial operation before all Network Upgrades might be identified through the DISIS-2012-002 study process as required, then this study must be conducted again to determine whether sufficient limited interconnection service exists to interconnect the GEN-2012-013 interconnection requests in addition to all higher priority requests in operation or pending operation.

A power flow analysis shows that the Customers Wind Turbine facilities can interconnect a maximum of 14 MW of interconnection capacity for system conditions as of December 31, 2013 and 0 MW of interconnection capacity for system conditions as of December 31, 2014. Powerflow analysis was based on both summer and winter peak conditions and light loading cases. The power flow analysis was conducted to account for impacts of interconnecting the plant to the rest of the SUNC transmission system for the system condition as it will be on December 31, 2013 and December 31, 2014. This interconnection request was studied for Energy Resource Interconnection Service (ERIS) only in this LOIS.

The Interconnection Customer's intent with this Interconnection Request to increase the capacity of the existing Gray County wind farm will allow the maximum interconnection and injection of 124MW of generation until such time that network upgrades can be completed.

In accordance with section 11.5 of the Interim GIA, the security required to begin Interim Interconnection Service is \$20,000,000.

The construction lead time to construct the necessary facilities required for Limited Operation or Interim Operation will be determined by the Transmission Owner during the Facility Study. Any proposed in service date will be contingent upon the completion of the substation or additions.

The generation facilities were studied with a total of 99 MW. This Impact study addresses the dynamic stability effects of interconnecting the plants to the rest of the SUNC transmission system for the system condition as it will be on December 31, 2013 and December 31, 2014. Two seasonal base cases were used in the study to analyze the stability impacts of the proposed generation facility. The cases studied were modified 2012 summer peak and 2012 winter peak cases that were adjusted to reflect system conditions at the requested in-service date. Each case was modified to include prior queued projects that are listed in the body of the report. Fifty-nine (59) contingencies were identified for use in this study. Siemens 2.3 MW Wind Turbines were modeled using information provided by the Customer.

Nothing in this study should be construed as a guarantee of transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service shall be requested on Southwest Power Pool's OASIS by the Customer.

Table of Contents

xecutive Summaryi	
able of Contentsiii	
ntroduction1	
Purpose 1	
acilities2	
Generating Facility	2
Interconnection Facility	2
Network Upgrade Security for Interim Interconnection Service.	3
Powerflow Analysis	
tability Analysis	
Contingencies Simulated	9
Further Model Preparation	.14
Results	.16
FERC LVRT Compliance	.19
Conclusion	

Introduction

<OMITTED TEXT> (Customer) has requested an Interim Operation Impact Study under the Southwest Power Pool Open Access Transmission Tariff (OATT) for interconnection of 99 MW of Wind Turbine generation within the balancing authority of Sunflower Electric Power Corporation (SUNC) in Gray County, Kansas. Customer has requested this separate Interim Operation Study to determine the impacts of interconnecting their generating facilities to the transmission system before such time that SPP can complete the required interconnection studies. Interim Operation Studies are conducted under GIA Section 11A.

This Impact study addresses the power flow and dynamic stability effects of interconnecting the plant to the rest of the SUNC transmission system for the system condition as it will be on December 31, 2013 and December 31, 2014. The Wind Turbine generation facilities were studied with a total of 99 MW. Three seasonal base cases were used in the study to analyze the power flow impacts of the proposed generation facility. The cases studied were modified version of the 2012 spring, 2013 summer, and 2013 winter to reflect the system condition at the requests inservice data. Two seasonal base cases were used in the study to analyze the stability impacts of the proposed generation facility. The cases studied versions of the 2012 summer peak and 2012 winter peak to reflect the system conditions at the requested in-service date. Each case was modified to include prior queued projects that are listed in the body of the report. Fifty-nine (59) contingencies were identified for this study.

Purpose

The purpose of this Interim Operation Impact Study (IOIS) is to evaluate the impact of the proposed interconnection on the reliability of the Transmission System. The IOIS considers the Base Case as well as all Generating Facilities (and with respect to (b) below, any identified Network Upgrades associated with such higher queued interconnection) that, on the date the IOIS is commenced:

- a) are directly interconnected to the Transmission System;
- b) are interconnected to Affected Systems and may have an impact on the Interconnection Request;
- c) have a pending higher queued Interconnection Request to interconnect to the Transmission System listed in Tabel 3A or Table 3B; or
- d) have no Queue Position but have executed an LGIA or requested that an unexecuted LGIA be filed with FERC.

Any changes to these assumptions, for example, one or more of the previously queued projects not included in this study signing an interconnection agreement, may require a re-study of this request at the expense of the customer.

Nothing in this System Impact Study constitutes a request for transmission service or confers upon the Interconnection Customer any right to receive transmission service.

Facilities

Generating Facility

This project was modeled as an equivalent wind turbine generator with the information provided by the customers for a total of 99MW of generation interconnection. The wind turbine is connection to an equivalent 0.69/34.5kV generator step unit (GSU). The high side of the GSU is connected to the 34.5/115kV substation transformer. An 115kV transmission line connects the Customer's substation transformer to the POI.

Interconnection Facility

The Point of Interconnection for GEN-2012-013 will be the Transmission Owners Haggard 115kV substation. Figure 1 shows one-line illustrations of the facilities and the POIs. Figure 2 shows a one-line bus interconnection of the Point of Interconnections.

Figure 1: GEN-2012-013 Facility and Proposed Interconnection Configurations

Network Upgrade Security for Interim Interconnection Service.

In accordance with Section 11.A.2.7 of the Attachment V., the Interconnection Customer is required to place security in the amount of any shared Network Uprades and 100% of the cost of non-shared Network Upgrade necessary to accommodate the interconnection of the Generating Facility. In accordance with powerflow results in Table 1A., the transmission facilities from Haggard to Judson Large will need to be rebuilt to accommodate the GEN-2012-013 interconnection request. The following network upgrades are needed -

- Haggard West Dodge 115kV line Reconductor/Rebuild 20.5 miles of 115kV line.
- W Dodge S Dodge 115kV line Reconductor/Rebuild 8.8 miles of 115kV line
- S Dodge Judson Large Reconductor 4.3 miles of 115kV line.

Estimated Costs - \$20,000,000

The interconnection customer will be required to provide security in the amount of \$20,000,000 to enter into an Interim GIA.

Powerflow Analysis

A powerflow analysis was conducted for the Interconnection Customers facilities using a modified version of the 2012 spring, 2013 summer, and 2013 winter seasonal models. The output of the Interconnection Customers facilities were offset in the model by a reduction in output of existing online SPP generation. This method allows the request to be studied as an Energy Resource (ERIS) Interconnection Request. This analysis was conducted assuming that previous queued requests listed in Table 3A or Table 3B is in-service.

The Southwest Power Pool (SPP) Criteria states that:

"The transmission system of the SPP region shall be planned and constructed so that the contingencies as set forth in the Criteria will meet the applicable NERC Reliability Standards for transmission planning. All MDWG power flow models shall be tested to verify compliance with the System Performance Standards from NERC Table 1 – Category A."

The ACCC function of PSS/E was used to simulate single contingencies in portions of or all of the control area of SUNC and other control areas within SPP and the resulting data analyzed. This satisfies the "more probable" contingency testing criteria mandated by NERC and the SPP criteria.

Higher queued projects listed in Table 4A and Table 4A were not modeled as in service. If any of these come in service, this study will need to be performed again to determine if any limited interconnection service is available.

The ACCC analysis indicates that the Customers projects can interconnect 14 MW of generation into the SUNC transmission system for system conditions as of December 31, 2013 and 0 MW of generation into the SUNC transmission system for system conditions as of December 31, 2014. This interconnection request was studied for Energy Resource Interconnection Service (ERIS) only in this IOIS.

Table 1A: ACCC Analysi	s for GEN-2012-013 with syste	em conditions as o	f December 31. 2013

								MW	
SEASON	SOURCE	DIRECTION	MONTCOMMONNAME	RATEA	RATEB	TDF	TC%LOADING	Available	CONTNAME
13G	G12_013	FROM->TO	HAGGARD - WEST DODGE 115KV CKT 1	110	110	0.99558	176.9691	14.0	BASE CASE
13WP	G12_013	FROM->TO	HAGGARD - WEST DODGE 115KV CKT 1	110	110	0.99578	175.9755	15.1	BASE CASE
13SP	G12_013	FROM->TO	HAGGARD - WEST DODGE 115KV CKT 1	110	110	0.99695	171.0569	20.6	BASE CASE
13G	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99558	158.6255	27.9	BASE CASE
									JUDSON LARGE - NORTH JUDSON LARGE SUB
13G	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99558	156.7073	25.2	115KV CKT 1
13SP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99695	152.9992	34.8	BASE CASE
13G	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99558	151.1582	32.5	GEN539670 4-JUDSON LARGE GENERATOR
									JUDSON LARGE - NORTH JUDSON LARGE SUB
13SP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99695	149.2162	35.1	115KV CKT 1
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
13G	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99558	148.4324	40.3	BASE CASE
13SP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99695	147.3917	37.4	GEN539670 4-JUDSON LARGE GENERATOR
			NORTH JUDSON LARGE SUB - SOUTH DODGE						JUDSON LARGE - NORTH JUDSON LARGE SUB
13G	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99558	146.1983	38.9	115KV CKT 1
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
13G	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99558	141.1404	45.5	GEN539670 4-JUDSON LARGE GENERATOR
13G	G12_013	FROM->TO	HAGGARD - WEST DODGE 115KV CKT 1	110	110	0.99646	139.6639	55.2	BASE CASE
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
13SP	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99695	137.8043	53.2	BASE CASE
			NORTH JUDSON LARGE SUB - SOUTH DODGE						JUDSON LARGE - NORTH JUDSON LARGE SUB
13SP	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99695	133.555	55.4	115KV CKT 1
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
13SP	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99695	132.0696	57.3	GEN539670 4-JUDSON LARGE GENERATOR
			NORTH JUDSON LARGE SUB - SOUTH DODGE						JUDSON LARGE - NORTH JUDSON LARGE SUB
13WP	G12_013	TO->FROM	115KV CKT 1	143.4	143.4	0.99578	129.9949	55.8	115KV CKT 1
			NORTH JUDSON LARGE SUB - SOUTH DODGE						NORTH JUDSON LARGE SUB - SPEARVILLE
13SP	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99695	129.6246	60.5	115KV CKT 1
			NORTH JUDSON LARGE SUB - SOUTH DODGE						SPEARVILLE (SPEARVL6) 230/115/13.8KV
13SP	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99695	129.6225	60.5	TRANSFORMER CKT 1
13G	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99646	126.3024	67.1	BASE CASE
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
13WP	G12_013	TO->FROM	115KV CKT 1	143.4	143.4	0.99578	125.9527	61.6	GEN539670 4-JUDSON LARGE GENERATOR
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
13WP	G12_013	TO->FROM	115KV CKT 1	143.4	143.4	0.99578	123.761	64.8	BASE CASE
									JUDSON LARGE - NORTH JUDSON LARGE SUB
13WP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	164.7	170.7	0.99578	117.5785	68.9	115KV CKT 1
		70. 50.01/		100 7	100 5	0.000/0	447.0005	76.0	JUDSON LARGE - NORTH JUDSON LARGE SUB
13G	G12_013	IO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99646	117.0905	/6.8	115KV CK [1
120	C12 012		NUKTH JUDSON LARGE SUB - SOUTH DODGE	120 7	120 5	0.00040	110 2002	70.4	
136	612_013	TO->FROM		120.7	129.5	0.99646	116.2063	79.4 79.6	
130	612 013	IO->FKOM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99646	115./055	/8.6	GEN539670 4-JUDSON LARGE GENERATOR

								MW	
SEASON	SOURCE	DIRECTION	MONTCOMMONNAME	RATEA	RATEB	TDF	TC%LOADING	Available	CONTNAME
13WP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	164.7	170.7	0.99578	115.601	73.2	BASE CASE
13WP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	164.7	170.7	0.99578	113.7831	75.4	GEN539670 4-JUDSON LARGE GENERATOR
			NORTH JUDSON LARGE SUB - SOUTH DODGE						JUDSON LARGE - NORTH JUDSON LARGE SUB
12G	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99646	107.095	89.8	115KV CKT 1
			NORTH JUDSON LARGE SUB - SPEARVILLE 115KV						JUDSON LARGE - NORTH JUDSON LARGE SUB
12G	G12_013	FROM->TO	CKT 1	165.1	177.7	0.99558	106.4736	87.4	115KV CKT 1
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
12G	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99646	105.9765	91.2	GEN539670 4-JUDSON LARGE GENERATOR
			JUDSON LARGE - NORTH JUDSON LARGE SUB						
13SP	G12_013	TO->FROM	115KV CKT 1	165.1	177.7	0.33645	105.4875	70.0	GEN539670 4-JUDSON LARGE GENERATOR
			JUDSON LARGE - NORTH JUDSON LARGE SUB						NORTH JUDSON LARGE SUB - SPEARVILLE
12G	G12_013	TO->FROM	115KV CKT 1	165.1	177.7	0.99558	101.0734	97.1	115KV CKT 1
			JUDSON LARGE - NORTH JUDSON LARGE SUB						SPEARVILLE (SPEARVL6) 230/115/13.8KV
12G	G12_013	TO->FROM	115KV CKT 1	165.1	177.7	0.99558	100	99.0	TRANSFORMER CKT 1

Table 1B: ACCC Analysis for GEN-2012-013 with system conditions as of December 31, 2014

								MW	
SEASON	SOURCE	DIRECTION	MONTCOMMONNAME	RATEA	RATEB	TDF	TC%LOADING	Available	CONTNAME
									NORTH JUDSON LARGE SUB - SPEARVILLE
14G	G12_013	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	95.6	95.6	0.27017	128.9267	0	115KV CKT 1
									SPEARVILLE (SPEARVL6) 230/115/13.8KV
14G	G12_013	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	95.6	95.6	0.27017	128.4597	0	TRANSFORMER CKT 1
14G	G12_013	FROM->TO	HAGGARD - WEST DODGE 115KV CKT 1	110	110	0.9955	177.0824	13.8	BASE CASE
13WP	G12_013	FROM->TO	HAGGARD - WEST DODGE 115KV CKT 1	110	110	0.99577	175.983	15.1	BASE CASE
14SP	G12_013	FROM->TO	HAGGARD - WEST DODGE 115KV CKT 1	110	110	0.99694	171.0521	20.6	BASE CASE
									NORTH JUDSON LARGE SUB - SPEARVILLE
14G	G12_013	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	95.6	95.6	0.27042	121.7415	22.1	115KV CKT 1
									SPEARVILLE (SPEARVL6) 230/115/13.8KV
14G	G12_013	FROM->TO	HARPER - MILAN TAP 138KV CKT 1	95.6	95.6	0.27042	121.2482	23.9	TRANSFORMER CKT 1
									JUDSON LARGE - NORTH JUDSON LARGE SUB
14G	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.9955	157.4299	24.3	115KV CKT 1
14G	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.9955	158.745	27.8	BASE CASE
14G	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.9955	151.4687	32.0	GEN539670 4-JUDSON LARGE GENERATOR
14SP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99694	152.9944	34.8	BASE CASE
									JUDSON LARGE - NORTH JUDSON LARGE SUB
14SP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99694	149.3174	34.9	115KV CKT 1
14SP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.99694	147.3886	37.4	GEN539670 4-JUDSON LARGE GENERATOR
			NORTH JUDSON LARGE SUB - SOUTH DODGE						JUDSON LARGE - NORTH JUDSON LARGE SUB
14G	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.9955	146.8581	38.0	115KV CKT 1
									NORTH JUDSON LARGE SUB - SPEARVILLE
14G	G12_013	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	100	100	0.27017	116.0272	39.7	115KV CKT 1

								MW	
SEASON	SOURCE	DIRECTION	MONTCOMMONNAME	RATEA	RATEB	TDF	TC%LOADING	Available	CONTNAME
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
14G	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.9955	148.5405	40.1	BASE CASE
									SPEARVILLE (SPEARVL6) 230/115/13.8KV
14G	G12_013	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	100	100	0.27017	115.5817	41.3	TRANSFORMER CKT 1
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
14G	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.9955	141.4223	45.1	GEN539670 4-JUDSON LARGE GENERATOR
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
14SP	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99694	137.8008	53.2	BASE CASE
			NORTH JUDSON LARGE SUB - SOUTH DODGE						JUDSON LARGE - NORTH JUDSON LARGE SUB
14SP	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99694	133.6388	55.3	115KV CKT 1
14G	G12_013	FROM->TO	HAGGARD - WEST DODGE 115KV CKT 1	110	110	0.9964	139.5464	55.3	BASE CASE
			NORTH JUDSON LARGE SUB - SOUTH DODGE						JUDSON LARGE - NORTH JUDSON LARGE SUB
14WP	G12_013	TO->FROM	115KV CKT 1	143.4	143.4	0.99577	130.0885	55.7	115KV CKT 1
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
14SP	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99694	132.0671	57.3	GEN539670 4-JUDSON LARGE GENERATOR
			NORTH JUDSON LARGE SUB - SOUTH DODGE						SPEARVILLE (SPEARVL6) 230/115/13.8KV
14SP	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99694	129.6517	60.5	TRANSFORMER CKT 1
			NORTH JUDSON LARGE SUB - SOUTH DODGE						NORTH JUDSON LARGE SUB - SPEARVILLE
14SP	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.99694	129.624	60.5	115KV CKT 1
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
14WP	G12_013	TO->FROM	115KV CKT 1	143.4	143.4	0.99577	125.9591	61.6	GEN539670 4-JUDSON LARGE GENERATOR
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
14WP	G12_013	TO->FROM	115KV CKT 1	143.4	143.4	0.99577	123.7683	64.8	BASE CASE
									NORTH JUDSON LARGE SUB - SPEARVILLE
14G	G12_013	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	100	100	0.27042	109.1405	65.2	115KV CKT 1
			JUDSON LARGE - NORTH JUDSON LARGE SUB						
14SP	G12_013	TO->FROM	115KV CKT 1	165.1	177.7	0.34462	106.3019	66.5	GEN539670 4-JUDSON LARGE GENERATOR
									SPEARVILLE (SPEARVL6) 230/115/13.8KV
14G	G12_013	TO->FROM	CLEARWATER - MILAN TAP 138KV CKT 1	100	100	0.27042	108.6639	67.0	TRANSFORMER CKT 1
14G	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.9964	126.1987	67.3	BASE CASE
14G	G12_013	TO->FROM	MULLERGREN - SPEARVILLE 230KV CKT 1	330.3	355.3	0.29605	102.6036	67.8	POST ROCK - SPEARVILLE 345KV CKT 1
									JUDSON LARGE - NORTH JUDSON LARGE SUB
14WP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	164.7	170.7	0.99577	117.6655	68.7	115KV CKT 1
14WP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	164.7	170.7	0.99577	115.6078	73.2	BASE CASE
14WP	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	164.7	170.7	0.99577	113.7891	75.4	GEN539670 4-JUDSON LARGE GENERATOR
									JUDSON LARGE - NORTH JUDSON LARGE SUB
14G	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.9964	117.5098	76.2	115KV CKT 1
14G	G12_013	TO->FROM	SOUTH DODGE - WEST DODGE 115KV CKT 1	120.7	129.5	0.9964	115.9071	78.3	GEN539670 4-JUDSON LARGE GENERATOR
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
14G	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.9964	116.0865	79.5	BASE CASE
			NORTH JUDSON LARGE SUB - SPEARVILLE 115KV						JUDSON LARGE - NORTH JUDSON LARGE SUB
14G	G12_013	FROM->TO	CKT 1	165.1	177.7	0.9955	106.9554	86.6	115KV CKT 1
	1		NORTH JUDSON LARGE SUB - SOUTH DODGE						JUDSON LARGE - NORTH JUDSON LARGE SUB
14G	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.9964	107.4351	89.3	115KV CKT 1

Southwest Power Pool, Inc.

Powerflow Analysis

								MW	
SEASON	SOURCE	DIRECTION	MONTCOMMONNAME	RATEA	RATEB	TDF	TC%LOADING	Available	CONTNAME
			NORTH JUDSON LARGE SUB - SOUTH DODGE						
14G	G12_013	TO->FROM	115KV CKT 1	120.7	129.5	0.9964	106.1337	91.0	GEN539670 4-JUDSON LARGE GENERATOR
									NORTH JUDSON LARGE SUB - SPEARVILLE
14G	G12_013	FROM->TO	G01_039AT 115.00 - GREENSBURG 115KV CKT 1	120.7	129.5	0.48444	102.3185	92.8	115KV CKT 1
									SPEARVILLE (SPEARVL6) 230/115/13.8KV
14G	G12_013	FROM->TO	G01_039AT 115.00 - GREENSBURG 115KV CKT 1	120.7	129.5	0.48444	101.5614	94.8	TRANSFORMER CKT 1
14G	G12_013	TO->FROM	MULLERGREN - SPEARVILLE 230KV CKT 1	330.3	355.3	0.29629	100.3364	95.0	POST ROCK - SPEARVILLE 345KV CKT 1
			JUDSON LARGE - NORTH JUDSON LARGE SUB						NORTH JUDSON LARGE SUB - SPEARVILLE
14G	G12_013	TO->FROM	115KV CKT 1	165.1	177.7	0.9955	101.0533	97.1	115KV CKT 1

Stability Analysis

Contingencies Simulated

Fifty-nine (59) contingencies were considered for the transient stability simulations. These contingencies included three phase faults and single phase line faults at locations defined by SPP. Single-phase line faults were simulated by applying a fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP current practice.

The faults that were defined and simulated are listed in Table 1 below.

Cont. No.	Cont. Name	Description					
	FLT_01_HAGGARD3_HAGGAR	3 phase fault on the Haggard 115kV (539667) to Haggard (539712) 34.5kV					
1	D1_115_34.5kV_3PH	transformer, near Haggard 115kV.					
1.		a. Apply fault at Haggard 115kV bus.					
		b. Clear fault after 5 cycles by tripping the faulted transformer.					
	FLT_02_NFTDODG3_FTDODG	3 phase fault on the N. Fort Dodge (539771) to Fort Dodge (539671) 115kV					
	E3_115kV_3PH	line, near N. Fort Dodge.					
2		a. Apply fault at N. Fort Dodge 115kV bus.					
2.		b. Clear fault after 5 cycles by tripping the faulted line.					
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.					
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.					
З	FLT_03_NFTDODG3_FTDODG	Single phase fault and sequence like previous					
Э.	E3_115kV_1PH	Single phase juult und sequence like previous					
	FLT_04_NFTDODG3_SPEARVL	3 phase fault on the N. Fort Dodge (539771) to Spearville (539694) 115kV					
	4_115kV_3PH	line, near N. Fort Dodge.					
Л		a. Apply fault at N. Fort Dodge 115kV bus.					
ч.		b. Clear fault after 5 cycles by tripping the faulted line.					
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.					
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.					
5	FLT_05_NFTDODG3_SPEARVL	Sinale phase fault and sequence like previous					
5.	4_115kV_1PH						
	FLT_06_FTDODGE3_CUDAHY	3 phase fault on the Fort Dodge (539671) to Cudahy (539659) 115kV line,					
	3_115kV_3PH	near Fort Dodge.					
6		a. Apply fault at Fort Dodge 115kV bus.					
0.		b. Clear fault after 5 cycles by tripping the faulted line.					
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.					
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.					
7	FLT_07_FTDODGE3_CUDAHY	Single phase fault and sequence like previous					
7.	3_115kV_1PH	Single phase juan and sequence like previous					

Table 1: Contingencies Evaluated

Cont. No.	Cont. Name	Description
	FLT_08_FTDODGE3_G01039A	3 phase fault on the Fort Dodge (539671) to GEN-2001-039A Tap (579025)
	POI_115kV_3PH	115kV line, near Fort Dodge.
8.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
9.	FLT_09_FTDODGE3_G01039A POI_115kV_1PH	Single phase fault and sequence like previous
	FLT_10_G01039APOI_GRNBU	3 phase fault on the GEN-2001-039A Tap (579025) to Greensburg (539664)
	KG3_115KV_3PH	a Apply fault at GEN-2001-039A Tap.
10.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
11.	RG3_115kV_1PH	Single phase fault and sequence like previous
	FLT_12_GRNBURG3_SUNCITY	3 phase fault on the Greensburg (539664) to Sun City (539697) 115kV line,
4.2	5_113KV_3FI1	a. Apply fault at Greensburg 115kV bus.
12.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
	FLT 13 GRNBURG3 SUNCITY	d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
13.	3_115kV_1PH	Single phase fault and sequence like previous
	FLT_14_SUNCITY3_MEDLDG3	3 phase fault on the Sun City (539697) to Medicine Lodge (539673) 115kV
	_113KV_3FI1	a. Apply fault at Sun City 115kV bus.
14.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
	FLT 15 SUNCITY3 MEDIDG3	d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
15.	_115kV_1PH	Single phase fault and sequence like previous
	FLT_16_MEDLDG3_SAWYER3	3 phase fault on the Medicine Lodge (539697) to Sawyer (539649) 115kV line,
10	_113KV_3FI1	a. Apply fault at Medicine Lodge 115kV bus.
16.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
	FLT 17 MEDIDG3 SAWYER3	a. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
17.	_115kV_1PH	Single phase fault and sequence like previous
	FLT_18_MEDLDG3_MEDLDG4	3 phase fault on the Medicine Lodge 115kV (539697) to Medicine Lodge (539674) 138kV transformer near Medicine Lodge 115kV
18.	_115_138KV_3PH	a. Apply fault at Medicine Lodge 115kV bus.
		b. Clear fault after 5 cycles by tripping the faulted transformer.
	FLT_19_CUDAHY3_KISMET3_ 115kV_3PH	3 phase fault on the Cudahy (539659) to Kismet (539646) 115kV line, near Cudahy.
10		a. Apply fault at Cudahy 115kV bus.
19.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
•	FLT 20 CUDAHY3 KISMET3	u. Leave fault on for 5 cycles, then it ip the fille fill (b) and remove fault.
20.	115kV_1PH	Single phase fault and sequence like previous

No.	Name	Description
	FLT_21_KISMET3_CMRIVTP3_	3 phase fault on the Kismet (539646) to Cimarron River Tap (539652) 115kV
	115kV_3PH	line, near Kismet.
21.		a. Apply fault at Kismet 115kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
22.	115kV_1PH	Single phase fault and sequence like previous
	FLT_23_CMRIVTP3_CIMPLT3_	3 phase fault on the Cimarron River Tap (539652) to Cimarron River Station
	115kV_3PH	(539654) 115KV line, near Limarron River Tap.
23.		a. Apply fault at cliffation River Tap 115KV bus.
		c Wait 20 cycles and then re-close the line in (h) back into the fault
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
24	FLT 24 CMRIVTP3 CIMPLT3	
24.	115kV_1PH	Single phase fault and sequence like previous
	FLT_25_CMRIVTP3_ELIBER3_	3 phase fault on the Cimarron River Tap (539652) to East Liberty (539672)
	115kV_3PH	115kV line, near Cimarron River Tap.
25.		a. Apply fault at Cimarron River Tap 115KV bus.
		c. Wait 20 cycles and then re-close the line in (b) back into the fault
		d Leave fault on for 5 cycles then trin the line in (b) back into the fault
• •	FLT 26 CMRIVTP3 ELIBER3	
26.	 115kV_1PH	Single phase fault and sequence like previous
	FLT_27_SPEARVL4_SPEARVL6	3 phase fault on the Spearville 115kV (539694) to Spearville 230kV (539695)
27	_115_230kV_3PH	transformer, near Spearville 115kV.
27.		a. Apply fault at Spearville 115kV bus.
		b. Clear fault after 5 cycles by tripping the faulted transformer.
	FLI_28_SPEARVL6_MULGREN	3 phase fault on the Spearville (539695) to Mullergren (539679) 230kV line,
	6_230KV_3PH	a Apply fault at Spearville 230kV bus
28.		h Clear fault after 5 cycles by tripping the faulted line
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
29	FLT_29_SPEARVL6_MULGREN	Single phase fault and sequence like previous
25.	6_230kV_1PH	
	FLT_30_SPEARVL6_SPERVIL7_	3 phase fault on the Spearville 230kV (539695) to Spearville 138kV (531469)
30.	230_345kV_3PH	transformer, near Spearville 230kV.
		a. Apply fault at spear ville 250KV bus.
	FLT 31 MULGBENG SHAYSG	3 nhase fault on the Mullergren (539679) to South Havs (530582) 230kV line
	230kV 3PH	near Mullergren.
24		a. Apply fault at Mullergren 230kV bus.
31.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
32.	FLT_32_MULGREN6_SHAYS6_ 230kV_1PH	Single phase fault and sequence like previous
	FLT_33_MULGREN6_HEIZER6 230kV_3PH	3 phase fault on the Mullergren (539679) to Heizer (530680) 230kV line, near Mullergren.
22		a. Apply fault at Mullergren 230kV bus.
55.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Cont. No.	Cont. Name	Description
	FLT 34 MULGREN6 HEIZER6	
34.	 230kV 1PH	Single phase fault and sequence like previous
	FLT 35 MULGREN6 CIRCLE6	3 phase fault on the Mullergren (539679) to Circle (532871) 230kV line, near
	230kV 3PH	Mullergren.
25		a. Apply fault at Mullergren 230kV bus.
35.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
26	FLT_36_MULGREN6_CIRCLE6	Single phase fault and sequence like provious
30.	_230kV_1PH	Single phase juult and sequence like previous
	FLT_37_MULGREN6_GRTBEN	3 phase fault on the Mullergren 230kV (539679) to Great Bend 115kV
37	D3_230_115kV_3PH	(539678) transformer, near Mullergren.
57.		a. Apply fault at Mullergren 230kV bus.
		b. Clear fault after 5 cycles by tripping the faulted transformer.
	FLT_38_SHAYS6_POSTROCK6	3 phase fault on the South Hays (530582) to Post Rock (530584) 230kV line,
	_230kV_3PH	near South Hays.
38.		a. Apply fault at South Hays 230kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
		d. Leave fault on for 5 cycles, then trip the line in (b) back into the fault.
		u. Leave fault on for 5 cycles, then trip the fine in (b) and remove fault.
39.	230kV 1PH	Single phase fault and sequence like previous
	$\underline{-230}$ $\underline{-111}$	3 phase fault on the South Havs 230kV (539679) to South Havs 115kV
_	115kV 3PH	(530553) transformer near South Hays 230kV bus
40.	_115KV_5111	a. Apply fault at South Hays 230kV bus.
		b. Clear fault after 5 cycles by tripping the faulted transformer.
	FLT 41 POSTROCK6 KNOLL6	3 phase fault on the Post Rock (530584) to Knoll (530558) 230kV line, near
	 230kV_3PH	Post Rock.
41		a. Apply fault at Post Rock 230kV bus.
41.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
42	FLT_42_POSTROCK6_KNOLL6	Sinale phase fault and sequence like previous
12.	_230kV_1PH	
	FLT_43_POSTROCK6_POSTRO	3 phase fault on the Post Rock 230kV (530584) to Post Rock 345kV (530583)
43.	CK7_230_345kV_3PH	transformer, near Post Rock 230kV bus.
		a. Apply fault at Post Rock 230kV bus.
		b. Clear fault after 5 cycles by tripping the faulted transformer.
	FLI_44_KINULL6_SIVIUKYHL6_	s phase fault on the Kholi (530558) to Smoky Hills (530592) 230kV line, near
		a Apply fault at Knoll 230kV bus
44.		h Clear fault after 5 cycles by trinning the faulted line
		c Wait 20 cycles and then re-close the line in (h) back into the fault
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault
	FLT 45 KNOLL6 SMOKYHL6	
45.	230kV 1PH	Single phase fault and sequence like previous
	FLT 46 KNOLL6 KNOLL3 23	3 phase fault on the Knoll 230kV (530558) to Knoll 115kV (530561)
10	0 115kV 3PH	transformer, near Knoll 230kV bus.
46.	_ _	a. Apply fault at Knoll 230kV bus.
		b. Clear fault after 5 cycles by tripping the faulted transformer.

Cont. No.	Cont. Name	Description
	FLT_47_POSTROCK7_SPERVIL	3 phase fault on the Post Rock (530583) to Spearville (531469) 345kV line,
	7_345kV_3PH	near Post Rock.
47.		a. Apply fault at Post Rock 345kV bus.
		c. Wait 20 cycles and then re-close the line in (b) back into the fault
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
10	FLT_48_POSTROCK7_SPERVIL	Single phase fault and sequence like proving
40.	7_345kV_1PH	
	FLT_49_SPERVIL7_GRAYCO_3	3 phase fault on the Spearville (531469) to Gray County (579284) 345kV line,
	45KV_3PH	a Apply fault at Spearville 345kV bus
49.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
50.	FLT_50_SPERVIL7_GRAYCO_3	Single phase fault and sequence like previous
	FLT_51_GRAYCO_HOLCOMB7	3 phase fault on the Gray County (579284) to Holcomb (531449) 345kV line,
	_345kV_3PH	near Gray County.
51.		a. Apply fault at Gray County 345kV bus.
		c Wait 20 cycles and then re-close the line in (b) back into the fault
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
52.	FLT_52_GRAYCO_HOLCOMB7	Single phase fault and sequence like previous
	_345kV_1PH	2 phase fault on the Holcomb (521440) to Finney (522852) 245kV line near
	345kV 3PH	Holcomb.
52		a. Apply fault at Holcomb 345kV bus.
55.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
= 4	FLT 54 HOLCOMB7 FINNEY7	
54.		Single phase fault and sequence like previous
	FLT_55_HOLCOMB7_SETAB7	3 phase fault on the Holcomb (531449) to Setab (531465) 345kV line, near
	_345KV_3PH	Apply fault at Holcomb 345kV bus
55.		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
56.	FLT_56_HOLCOMB7_SETAB7 345kV 1PH	Single phase fault and sequence like previous
	FLT_57_HOLCOMB7_HOLCO	3 phase fault on the Holcomb 345kV (531449) to Holcomb 115kV (531448)
57.	MB3_345_115kV_3PH	transformer, near Holcomb 230kV bus.
		a. Apply fault at Holcomb 230kV bus.
	FLT 58 WDODGE3 NWDOD	3 phase fault on the W. Dodge (539699) hus
58.	G3_115kV_3PH	a. Apply fault at W. Dodge 115kV bus.
		b. Clear fault after 5 cycles.
59.	FLT_59_WDODGE3_NWDOD	Single phase fault and sequence like previous
-	G3_115KV_1PH	

Further Model Preparation

The base cases contain prior queued projects for system conditions on December 31, 2013 are shown in Table 3A. The base case contains prior queued projects for system conditions on December 31, 2014 are shown in Table 3B.

The Wind Turbine generation from the study customer and the previously queued customers were dispatched into the SPP footprint.

Initial simulations were carried out on both base cases and cases with the added generation for a no-disturbance run of 20 seconds to verify the numerical stability of the model. All cases were confirmed to be stable.

Project	MW
Montezuma	110
GEN-2001-039A	105
GEN-2002-025A	150
GEN-2003-019	250
GEN-2004-014	100
GEN-2005-012	160
GEN-2006-021	101
GEN-2007-040	133

Table 2A: Prior Queued Projects Included

Table 3B: Prior Queued Projects Included

Project	MW
Montezuma	110
GEN-2001-039A	105
GEN-2002-025A	150
GEN-2003-019	250
GEN-2004-014	100
GEN-2005-012	160
GEN-2006-021	101
GEN-2007-040	133
GEN-2008-018	300

The projects listed in Table 4A are higher or equally queued projects that are not included in the analysis of system conditions on December 31, 2013. The projects listed in Table 4B are higher or equally queued projects that are no included in the analysis of system conditions on December 31, 2014. If any of these projects come into service, this study will need to be re-performed to determine if any limited service is available.

Project	MW
GEN-2004-014	54.5
GEN-2005-012	90
GEN-2006-006	205.5
GEN-2006-022	150
GEN-2007-038	200
GEN-2007-040	67
GEN-2008-018	405
GEN-2008-079	98.9
GEN-2008-124	200
GEN-2010-009	165.6
GEN-2010-015	200.1
GEN-2010-029	450
GEN-2010-045	197.8
GEN-2010-049	49.6
GEN-2010-052	301.3
GEN-2010-053	199.8
GEN-2010-061	180
GEN-2011-008	600
GEN-2011-016	200.1
GEN-2011-017	299
GEN-2011-023	299
GEN-2011-043	150
GEN-2011-044	150
GEN-2012-003	22.5
GEN-2012-011	200
GEN-2012-012	200

 Table 4A: Prior Queued Projects Not Included with system condition as of December 31, 2013

Table 4B: Prior Queued Projects Not Included with system condition as of December 31, 2014

Project	MW
GEN-2004-014	54.5
GEN-2005-012	90
GEN-2006-006	205.5
GEN-2006-022	150
GEN-2007-038	200
GEN-2007-040	67
GEN-2008-018	105
GEN-2008-079	98.9
GEN-2008-124	200

Project	MW
GEN-2010-009	165.6
GEN-2010-015	200.1
GEN-2010-029	450
GEN-2010-045	197.8
GEN-2010-049	49.6
GEN-2010-052	301.3
GEN-2010-053	199.8
GEN-2010-061	180
GEN-2011-008	600
GEN-2011-016	200.1
GEN-2011-017	299
GEN-2011-023	299
GEN-2011-043	150
GEN-2011-044	150
GEN-2012-003	22.5
GEN-2012-011	200
GEN-2012-012	200

Results

Results of the stability analysis are summarized in Table 4. These results are valid for GEN-2012-013 interconnecting with Forty-three (43) Siemens 2.3 MW Wind Turbine Generators with a generation amount up to 98.9 MW. The results indicate that with the study project, GEN-2012-013, at maximum output and the existing generation project, Gray County Wind (Montezuma Wind) restricted to a maximum output of 50MW (148.9MW maximum from both projects), the transmission system remains stable for all contingencies studied. However, the powerflow analysis has determined a lower limit for GEN-2012-013; the powerflow analysis limits the interconnection to 14MW.

Cont. No.	Cont. Name	Description	2011 Summer	2011 Winter
1.	FLT_01_HAGGARD3_HAGG ARD1_115_34.5kV_3PH	3 phase fault on the Haggard 115kV (539667) to Haggard (539712) 34.5kV transformer, near Haggard 115kV.	Stable	Stable
2.	FLT_02_NFTDODG3_FTDOD GE3_115kV_3PH	3 phase fault on the N. Fort Dodge (539771) to Fort Dodge (539671) 115kV line, near N. Fort Dodge.	Stable	Stable
3.	FLT_03_NFTDODG3_FTDOD GE3_115kV_1PH	Single phase fault and sequence like previous	Stable	Stable
4.	FLT_04_NFTDODG3_SPEAR VL4_115kV_3PH	3 phase fault on the N. Fort Dodge (539771) to Spearville (539694) 115kV line, near N. Fort Dodge.	Stable	Stable
5.	FLT_05_NFTDODG3_SPEAR VL4_115kV_1PH	Single phase fault and sequence like previous	Stable	Stable
6.	FLT_06_FTDODGE3_CUDAH Y3_115kV_3PH	3 phase fault on the Fort Dodge (539671) to Cudahy (539659) 115kV line, near Fort Dodge.	Stable	Stable
7.	FLT_07_FTDODGE3_CUDAH Y3_115kV_1PH	Single phase fault and sequence like previous	Stable	Stable

Table 4: Contingencies Evaluated

Cont. No.	Cont. Name	Description	2011 Summer	2011 Winter
8.	FLT_08_FTDODGE3_G0103 9APOI_115kV_3PH	3 phase fault on the Fort Dodge (539671) to GEN-2001- 039A Tap (579025) 115kV line, near Fort Dodge.	Stable	Stable
9.	FLT_09_FTDODGE3_G0103 9APOI_115kV_1PH	Single phase fault and sequence like previous	Stable	Stable
10.	FLT_10_G01039APOI_GRNB URG3_115kV_3PH	3 phase fault on the GEN-2001-039A Tap (579025) to Greensburg (539664) 115kV line, near GEN-2001-039A Tap.	Stable	Stable
11.	FLT_11_G01039APOI_GRNB URG3_115kV_1PH	Single phase fault and sequence like previous	Stable	Stable
12.	FLT_12_GRNBURG3_SUNCI TY3_115kV_3PH	3 phase fault on the Greensburg (539664) to Sun City (539697) 115kV line, near Greensburg.	Stable	Stable
13.	FLT_13_GRNBURG3_SUNCI TY3 115kV 1PH	Single phase fault and sequence like previous	Stable	Stable
14.	FLT_14_SUNCITY3_MEDLD G3_115kV_3PH	3 phase fault on the Sun City (539697) to Medicine Lodge (539673) 115kV line, near Sun City.	Stable	Stable
15.	FLT_15_SUNCITY3_MEDLD G3_115kV_1PH	Single phase fault and sequence like previous	Stable	Stable
16.	FLT_16_MEDLDG3_SAWYER 3_115kV_3PH	3 phase fault on the Medicine Lodge (539697) to Sawyer (539649) 115kV line, near Medicine Lodge.	Stable	Stable
17.	FLT_17_MEDLDG3_SAWYER 3_115kV_1PH	Single phase fault and sequence like previous	Stable	Stable
18.	FLT_18_MEDLDG3_MEDLD G4_115_138kV_3PH	3 phase fault on the Medicine Lodge 115kV (539697) to Medicine Lodge (539674) 138kV transformer, near Medicine Lodge 115kV.	Stable	Stable
19.	FLT_19_CUDAHY3_KISMET3 _115kV_3PH	3 phase fault on the Cudahy (539659) to Kismet (539646) 115kV line, near Cudahy.	Stable	Stable
20.	FLT_20_CUDAHY3_KISMET3 _115kV_1PH	Single phase fault and sequence like previous	Stable	Stable
21.	FLT_21_KISMET3_CMRIVTP 3_115kV_3PH	3 phase fault on the Kismet (539646) to Cimarron River Tap (539652) 115kV line, near Kismet.	Stable	Stable
22.	FLT_22_KISMET3_CMRIVTP 3_115kV_1PH	Single phase fault and sequence like previous	Stable	Stable
23.	FLT_23_CMRIVTP3_CIMPLT 3_115kV_3PH	3 phase fault on the Cimarron River Tap (539652) to Cimarron River Station (539654) 115kV line, near Cimarron River Tap.	Stable	Stable
24.	FLT_24_CMRIVTP3_CIMPLT 3_115kV_1PH	Single phase fault and sequence like previous	Stable	Stable
25.	FLT_25_CMRIVTP3_ELIBER3 _115kV_3PH	3 phase fault on the Cimarron River Tap (539652) to East Liberty (539672) 115kV line, near Cimarron River Tap.	Stable	Stable
26.	FLT_26_CMRIVTP3_ELIBER3 _115kV_1PH	Single phase fault and sequence like previous	Stable	Stable
27.	FLT_27_SPEARVL4_SPEARV L6_115_230kV_3PH	3 phase fault on the Spearville 115kV (539694) to Spearville 230kV (539695) transformer, near Spearville 115kV.	Stable	Stable
28.	FLT_28_SPEARVL6_MULGR EN6_230kV_3PH	3 phase fault on the Spearville (539695) to Mullergren (539679) 230kV line, near Spearville.	Stable	Stable
29.	FLT_29_SPEARVL6_MULGR EN6_230kV_1PH	Single phase fault and sequence like previous	Stable	Stable
30.	FLT_30_SPEARVL6_SPERVIL 7_230_345kV_3PH	3 phase fault on the Spearville 230kV (539695) to Spearville 138kV (531469) transformer, near Spearville 230kV.	Stable	Stable
31.	FLT_31_MULGREN6_SHAYS 6_230kV_3PH	3 phase fault on the Mullergren (539679) to South Hays (530582) 230kV line, near Mullergren.	Stable	Stable

Cont. No.	Cont. Name	Description	2011 Summer	2011 Winter
32.	FLT_32_MULGREN6_SHAYS 6_230kV_1PH	Single phase fault and sequence like previous	Stable	Stable
33.	FLT_33_MULGREN6_HEIZER 6_230kV_3PH	3 phase fault on the Mullergren (539679) to Heizer (530680) 230kV line, near Mullergren.	Stable	Stable
34.	FLT_34_MULGREN6_HEIZER 6_230kV_1PH	Single phase fault and sequence like previous	Stable	Stable
35.	FLT_35_MULGREN6_CIRCLE 6_230kV_3PH	3 phase fault on the Mullergren (539679) to Circle (532871) 230kV line, near Mullergren.	Stable	Stable
36.	FLT_36_MULGREN6_CIRCLE 6 230kV 1PH	Single phase fault and sequence like previous	Stable	Stable
37.	FLT_37_MULGREN6_GRTBE ND3 230 115kV 3PH	3 phase fault on the Mullergren 230kV (539679) to Great Bend 115kV (539678) transformer, near Mullergren.	Stable	Stable
38.	FLT_38_SHAYS6_POSTROCK 6 230kV 3PH	3 phase fault on the South Hays (530582) to Post Rock (530584) 230kV line, near South Hays.	Stable	Stable
39.	FLT_39_SHAYS6_POSTROCK 6 230kV 1PH	Single phase fault and sequence like previous	Stable	Stable
40.		3 phase fault on the South Hays 230kV (539679) to South Hays 115kV (530553) transformer, near South Hays 230kV bus.	Stable	Stable
41.	FLT_41_POSTROCK6_KNOLL 6_230kV_3PH	3 phase fault on the Post Rock (530584) to Knoll (530558) 230kV line, near Post Rock.	Stable	Stable
42.	FLT_42_POSTROCK6_KNOLL 6_230kV_1PH	Single phase fault and sequence like previous	Stable	Stable
43.	FLT_43_POSTROCK6_POSTR OCK7_230_345kV_3PH	3 phase fault on the Post Rock 230kV (530584) to Post Rock 345kV (530583) transformer, near Post Rock 230kV bus.	Stable	Stable
44.	FLT_44_KNOLL6_SMOKYHL 6_230kV_3PH	3 phase fault on the Knoll (530558) to Smoky Hills (530592) 230kV line, near Knoll	Stable	Stable
45.	FLT_45_KNOLL6_SMOKYHL 6_230kV_1PH	Single phase fault and sequence like previous	Stable	Stable
46.	FLT_46_KNOLL6_KNOLL3_2 30_115kV_3PH	3 phase fault on the Knoll 230kV (530558) to Knoll 115kV (530561) transformer, near Knoll 230kV bus.	Stable	Stable
47.	FLT_47_POSTROCK7_SPERV IL7_345kV_3PH	3 phase fault on the Post Rock (530583) to Spearville (531469) 345kV line, near Post Rock.	Stable	Stable
48.	FLT_48_POSTROCK7_SPERV IL7_345kV_1PH	Single phase fault and sequence like previous	Stable	Stable
49.	FLT_49_SPERVIL7_GRAYCO _345kV_3PH	3 phase fault on the Spearville (531469) to Gray County (579284) 345kV line, near Spearville.	Stable	Stable
50.	FLT_50_SPERVIL7_GRAYCO _345kV_1PH	Single phase fault and sequence like previous	Stable	Stable
51.	FLT_51_GRAYCO_HOLCOM B7_345kV_3PH	3 phase fault on the Gray County (579284) to Holcomb (531449) 345kV line, near Gray County.	Stable	Stable
52.	FLT_52_GRAYCO_HOLCOM B7 345kV 1PH	Single phase fault and sequence like previous	Stable	Stable
53.	FLT_53_HOLCOMB7_FINNE Y7 345kV 3PH	3 phase fault on the Holcomb (531449) to Finney (523853) 345kV line, near Holcomb.	Stable	Stable
54.	FLT_54_HOLCOMB7_FINNE Y7_345kV_1PH	Single phase fault and sequence like previous	Stable	Stable
55.	FLT_55_HOLCOMB7_SETAB 7 345kV 3PH	3 phase fault on the Holcomb (531449) to Setab (531465) 345kV line, near Holcomb.	Stable	Stable
56.	FLT_56_HOLCOMB7_SETAB 7_345kV_1PH	Single phase fault and sequence like previous	Stable	Stable

Southwest Power Pool, Inc.

Cont. No.	Cont. Name	Description	2011 Summer	2011 Winter
57.	FLT_57_HOLCOMB7_HOLC OMB3_345_115kV_3PH	3 phase fault on the Holcomb 345kV (531449) to Holcomb 115kV (531448) transformer, near Holcomb 230kV bus.	Stable	Stable
58.	FLT_58_WDODGE3_NWDO DG3_115kV_3PH	3 phase fault on the W. Dodge (539699) bus.	Stable	Stable
59.	FLT_59_WDODGE3_NWDO DG3_115kV_1PH	Single phase fault and sequence like previous	Stable	Stable

FERC LVRT Compliance

FERC Order #661A places specific requirements on wind farms through its Low Voltage Ride Through (LVRT) provisions. For Interconnection Agreements signed after December 31, 2006, wind farms shall stay on line for faults at the POI that draw the voltage down at the POI to 0.0 pu.

With generator output dispatched for both facilities at 124MW, fault contingencies were developed to verify that wind farms remain on line when the POI voltage is drawn down to 0.0 pu. These contingencies are shown in Table 5.

Cont. Name	Description
FLT_01_HAGGARD3_HAGG	3 phase fault on the Haggard 115kV (539667) to Haggard (539712) 34.5kV
ARD1_115_34.5kV_3PH	transformer, near Haggard 115kV.
	a. Apply fault at Haggard 115kV bus.
	b. Clear fault after 5 cycles by tripping the faulted transformer.
FLT_02_NFTDODG3_FTDO	3 phase fault on the N. Fort Dodge (539771) to Fort Dodge (539671) 115kV line, near
DGE3_115kV_3PH	N. Fort Dodge.
	a. Apply fault at N. Fort Dodge 115kV bus.
	b. Clear fault after 5 cycles by tripping the faulted line.
	c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
	d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
FLT_04_NFTDODG3_SPEAR	3 phase fault on the N. Fort Dodge (539771) to Spearville (539694) 115kV line, near
VL4_115kV_3PH	N. Fort Dodge.
	a. Apply fault at N. Fort Dodge 115kV bus.
	b. Clear fault after 5 cycles by tripping the faulted line.
	c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
	d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
FLT_58_WDODGE3_NWDO DG3_115kV_3PH	3 phase fault on the W. Dodge (539699) bus.

Table 5: Contingencies Evaluated

The prior queued project wind farms remained online for the fault contingencies described in this section and for all the fault contingencies described in the Contingencies Simulated section. GEN-2012-013 is found to be in compliance with FERC Order #661A conditioned upon the operating limits described in this report.

Conclusion

<OMITTED TEXT> (Customer) has requested a Interim Operation Impact Study for limited interconnection service of 99 MW of Wind Turbine generation within the balancing authority of Sunflower Electric Power (SUNC) in Gray County, Kansas, in accordance with section 11A of the Standard Generation Interconnection Procedures Agreement (GIA) in the SPP OATT.

Power flow analysis showed that the Customers Wind Turbine facilities can interconnect 14 MW of Wind Turbine generation. The interconnection requests were studied for Energy Resource Interconnection Service (ERIS) only in this IOIS.

The construction lead time to construct the substation or additions Haggard substation will be determined by the Transmission Owner during the Facility Study. Any proposed in service date will be contingent upon the completion of the substation or additions.

The stability analysis results of this study show that with the study project, GEN-2012-013, at maximum output and the existing generation project, Gray County Wind (Montezuma Wind) restricted to a maximum output of 50MW (148.9MW maximum from both projects), the Wind Turbine generation facility and the transmission system will remain stable for the studied contingencies.

The security to be provided by the Intereconnection Customer to proceed with Interim Interconnection Service is \$20,000,000.

The projects listed in Table 4A or Table 4B are higher or equally queued projects that are not included in this analysis. If any of these projects come into service, this study will need to be reperformed to determine if any limited interconnection service is available.

The estimates do not include any costs associated with the deliverability of the energy to final customers. These costs are determined by separate studies if the Customer requests transmission service through Southwest Power Pool's OASIS. It should be noted that the models used for simulation do not contain all SPP transmission service.