# Preliminary Interconnection System Impact Study for Generation Interconnection Requests

0-0-0

000

000000

# (PISIS - 2011 - 001)

August 2011

**Generation Interconnection** 



## **Revision History**

| Date or Version<br>Number | Author               | Change Description | Comments      |
|---------------------------|----------------------|--------------------|---------------|
| 8/31/2011                 | Southwest Power Pool | N/A                | Report Issued |
|                           |                      |                    |               |

### **Executive Summary**

Generation Interconnection customers have requested a Preliminary Interconnection System Impact Study (PISIS) under the Generation Interconnection Procedures (GIP) in the Southwest Power Pool Open Access Transmission Tariff (OATT). The Interconnection Customers' requests have been clustered together for the following Impact Cluster Study. This Impact Study analyzes the interconnecting of multiple generation interconnection requests associated with new generation totaling approximately 479.0 MW of new generation which would be located within the transmission systems of Mid-Kansas Electric Power LLC (MKEC), Missouri Public Service (MIPU), Nebraska Public Power District (NPPD), Midwest Energy Inc. (MIDW), Oklahoma Gas and Electric (OKGE), Omaha Public Power District (OPPD), Southwestern Public Service (SPS), Sunflower Electric Power Corporation (SUNC), Westar Energy (WERE) and Western Farmers Electric Cooperative (WFEC). The various generation interconnection requests have differing proposed in-service dates<sup>1</sup>. The generation interconnection requests included in this Impact Cluster Study are listed in Appendix A by their queue number, amount, requested interconnection service, area, requested interconnection point, proposed interconnection point, and the requested in-service date.

Power flow analysis has indicated that for the power flow cases studied, 479.0 MW of nameplate generation may be interconnected with transmission system reinforcements within the SPP transmission system. Dynamic Stability and power factor analysis has determined the need for reactive compensation in accordance with Order No. 661-A for wind farm interconnection requests and those requirements are listed for each interconnection request within the contents of this report.

Dynamic Stability Analysis has determined that the transmission system will remain stable with the assigned Network Upgrades and necessary reactive compensation requirements.

The total estimated minimum cost for interconnecting the PISIS-2011-001 interconnection customers is \$58,450,000. These costs are shown in Appendix E and F. Interconnection Service to PISIS-2011-001 interconnection customers is also contingent upon higher queued customers paying for certain required network upgrades. The in service date for the PISIS customers will be deferred until the construction of these network upgrades can be completed.

These costs do not include the Interconnection Customer Interconnection Facilities as defined by the SPP Open Access Transmission Tariff (OATT). This cost does not include additional network constraints in the SPP transmission system that were identified as shown in Appendix H.

Preliminary Interconnection System Impact Study for Grouped Generation Interconnection Requests - (PISIS-2011-001) F-1

<sup>&</sup>lt;sup>1</sup> The generation interconnection requests in-service dates will need to be deferred based on the required lead time for the Network Upgrades necessary. The Interconnection Customer's that proceed to the Facility Study will be provided a new in-service date based on the competition of the Facility Study. time for the Network Upgrades necessary. The Interconnection Customer's that proceed to the Facility Study will be provided a new in-service date based on the competition of the Facility Study will be provided a new in-service date based on the competition of the Facility Study will be provided a new in-service date based on the competition of the Facility Study.

Network Constraints listed in Appendix H are in the local area of the new generation when this generation is injected throughout the SPP footprint for the Energy Resource (ER) Interconnection Request. Certain Interconnection Requests were studied for Network Resource Interconnection Service (NR). Those constraints are listed in Appendix H. Additional Network constraints will have to be verified with a Transmission Service Request (TSR) and associated studies. With a defined source and sink in a TSR, this list of Network Constraints will be refined and expanded to account for all Network Upgrade requirements.

The required interconnection costs listed in Appendix E and F do not include all costs associated with the deliverability of the energy to final customers. These costs are determined by separate studies if the Customer submits a Transmission Service Request through SPP's Open Access Same Time Information System (OASIS) as required by Attachment Z1 of the SPP OATT.

## **Table of Contents**

| Revision Historyi                                                  |
|--------------------------------------------------------------------|
| Executive Summaryii                                                |
| Table of Contents 1                                                |
| ntroduction1                                                       |
| Model Development 1                                                |
| dentification of Network Constraints5                              |
| Determination of Cost Allocated Network Upgrades5                  |
| nterconnection Facilities                                          |
| Power Flow                                                         |
| Stability Analysis                                                 |
| Conclusion17                                                       |
| Appendix18                                                         |
| A. Generation Interconnection Requests Considered for Impact Study |

### Introduction

Pursuant to the Southwest Power Pool (SPP) Open Access Transmission Tariff (OATT), SPP has conducted this Preliminary Interconnection System Impact Study (PISIS) for certain generation interconnection requests in the SPP Generation Interconnection Queue. These interconnection requests have been clustered together for the following Impact Study. The customers will be referred to in this study as the PISIS-2011-001 Interconnection Customers. This Impact Study analyzes the interconnecting of multiple generation interconnection requests associated with new generation totaling 479.0 MW of new generation which would be located within the transmission systems of American Electric Power (AEPW), Kansas City Power and Light (KCPL), Missouri Public Service (MIPU), Nebraska Public Power District (NPPD), Oklahoma Gas and Electric (OKGE), Southwestern Public Service (SPS), Sunflower Electric Power Corporation (SUNC), and Westar Energy (WERE). The various generation interconnection requests have differing proposed inservice dates<sup>2</sup>. The generation interconnection requests included in this Impact Study are listed in Appendix A by their queue number, amount, requested interconnection service, area, requested interconnection point, proposed interconnection point, and the requested in-service date.

The primary objective of this Preliminary Interconnection System Impact Study is to identify the system constraints associated with connecting the generation to the area transmission system. The Impact and other subsequent Interconnection Studies are designed to identify attachment facilities, Network Upgrades and other Direct Assignment Facilities needed to accept power into the grid at each specific interconnection receipt point.

## **Model Development**

#### Interconnection Requests Included in the Cluster

SPP has included all interconnection requests that submitted a Preliminary Interconnection System Impact Study request no later than March 31, 2011 and were subsequently accepted by Southwest Power Pool under the terms of the Generator Interconnection Procedures (GIP) that became effective March 30, 2010.

The interconnection requests that are included in this study are listed in Appendix A.

#### **Previous Queued Projects**

The previous queued projects included in this study are listed in Appendix B. In addition to the Base Case Upgrades, the previous queued projects and associated upgrades were assumed to be

<sup>&</sup>lt;sup>2</sup> The generation interconnection requests in-service dates will need to be deferred based on the required lead time for the Network Upgrades necessary. The Interconnection Customer's that proceed to the Facility Study will be provided a new in-service date based on the competition of the Facility Study.

in-service and added to the Base Case models. These projects were dispatched as Energy Resources with equal distribution across the SPP footprint.

#### **Development of Base Cases**

**Power Flow** - The 2010 series Transmission Service Request (TSR) Models 2011 spring, 2012 summer and winter peak, 2016 summer and winter peak, and 2021 summer peak scenario 0 cases were used for this study. After the cases were developed, each of the control areas' resources were then re-dispatched using current dispatch orders.

**Stability** – The 2010 series SPP Model Development Working Group (MDWG) Models 2011 winter and 2011 summer were used as starting points for this study.

#### **Base Case Upgrades**

The following facilities are part of the SPP Transmission Expansion Plan or the Balanced Portfolio or recently approved Priority Projects. These facilities have been approved or are in construction stages and were assumed to be in-service at the time of dispatch and added to the base case models. The PISIS-2011-001 Customers have not been assigned cost for the below listed projects. The PISIS-2011-001 Customers Generation Facilities in service dates may need to be delayed until the completion of the following upgrades. If for some reason, construction on these projects is discontinued, additional restudies will be needed to determine the interconnection needs of the PISIS customers.

- Hitchland 345/230/115kV upgrades to be built by SPS for 2010/2011 in-service<sup>3</sup>.
  - Hitchland Moore County 230kV line
  - Hitchland Perryton 230kV line
  - Hitchland Texas County 115kV line
  - Hitchland Hansford County 115kV line
  - Hitchland Sherman County Tap 115kV line
- Valliant Hugo Sunnyside 345kV assigned to Aggregate Study AG3-2006 Customers
- Wichita Reno County Summit 345kV to be built by WERE<sup>4</sup>.
- Rose Hill Sooner 345kV to be built by WERE/OKGE.
- Knob Hill Steele City 115kV to be built by NPPD/WERE.
- Balanced Portfolio Projects<sup>5</sup>:
  - Gracemont 345/138/13.2kV Autotransformer
  - Woodward– Tuco 345kV line
  - Iatan– Nashua 345kV line
  - Muskogee– Seminole 345kV line
  - Post Rock– Axtell 345kV line

<sup>&</sup>lt;sup>3</sup> Approved 230kV upgrades are based on SPP 2007 STEP. Upgrades may need to be re-evaluated in the system impact study.

<sup>&</sup>lt;sup>4</sup> Approved based on an order of the Kansas Corporation Commission issued in Docket no. 07-WSEE-715-MIS

<sup>&</sup>lt;sup>5</sup> Notice to Construct (NTC) issued June, 2009

- Spearville– Post Rock 345kV line
- Tap Stillwell Swissvale 345kV line at West Gardner
- Priority Projects<sup>6</sup>:
  - Hitchland Woodward double circuit 345kV
  - Woodward Medicine Lodge double circuit 345kV
  - Spearville Comanche (Clark) double circuit 345kV
  - Comanche (Clark) Medicine Lodge double circuit 345kV
  - Medicine Lodge Wichita double circuit 345kV
  - Medicine Lodge 345/138kV autotransformer

#### **Contingent Upgrades**

The following facilities do not yet have approval. These facilities have been assigned to higher queued interconnection customers. These facilities have been included in the models for the PISIS-2011-001 study and are assumed to be in service. <u>The PISIS-2011-001 Customers at this time do not have responsibility for these facilities but may later be assigned the cost of these facilities if higher queued customers terminate their GIA or withdraw from the interconnection queue. The PISIS-2011-001 Customer Generation Facilities in service dates may need to be delayed until the completion of the following upgrades.</u>

- Finney Holcomb 345kV ckt #2 line assigned to GEN-2006-044 interconnection customer. This customer is currently in suspension<sup>7</sup>.
- Central Plains Setab 115kV transmission line assigned to GEN-2007-013 interconnection customer.
- Grassland 230/115kV autotransformer #2 assigned to 1<sup>st</sup> Cluster Interconnection Customers (100% to GEN-2008-016)
- Judson Large North Judson Large Spearville 115kV circuit #2 assigned to DISIS-2009-001-1 Interconnection Customers (100% to GEN-2008-079)
- Hitchland Wheeler (Border) double circuit 345kV assigned to DISIS-2010-001 Interconnection Customers
- Madison County Hoskins 230kV Ckt #1 assigned to DISIS-2010-001 Interconnection Customer
- Washita Gracemont 138kV circuit #2 assigned to DISIS-2010-001 Interconnection Customers
- Post Rock 345/230kV autotransformer #2 assigned to DISIS-2010-001 Interconnection Customers.
- Washita Weatherford 138kV Ckt #1 assigned to DISIS-2010-001 Interconnection Customers
- GEN-2008-079 Tap Spearville 115kV circuit #1 assigned to DISIS-2010-001 Interconnection Customers

<sup>&</sup>lt;sup>6</sup> Notice to Construct (NTC) issued June, 2010. NTC for double circuit lines indicated that NTC may be revised at a later time to be built at a higher voltage.

<sup>&</sup>lt;sup>7</sup> Based on Facility Study Posting November 2008

- Spearville 345/115kV autotransformer #1 assigned to DISIS-2010-001 Interconnection Customers
- Beaver County Gray County 345kV Ckt #1 assigned to DISIS-2010-002 Interconnection Customers
- Medicine Lodge 345/115kV autotransformer #2 assigned to DISIS-2010-002 Interconnection Customers
- St. John St. John 115kV Ckt #1 assigned to DISIS-2010-002 Interconnection Customers
- Northwest 345/138/13.8kV autotransformer circuit #1 assigned to DISIS-2010-002 NRIS Interconnection Customer Gen-2010-040
- Beaver County Comanche 345kV Ckt #1 assigned to DISIS-2011-001 Interconnection Customers
- Border Grassland 345kV conversion assigned to DISIS-2011-001 Interconnection Customers
- Circle Reno double 345kV assigned to DISIS-2011-001 Interconnection Customers
- GEN-2010-047 Crete 115kV Ckt #1 assigned to DISIS-2011-001 Interconnection Customers
- Grassland Jones 345kV Ckt #1 assigned to DISIS-2011-001 Interconnection Customers
- Hobart Junction Snyder 138kV conversion assigned to DISIS-2011-001 Interconnection Customers
- Jones Tuco 345kV Ckt #1 assigned to DISIS-2011-001 Interconnection Customers
- Lawton Eastside Oklaunion 345kV Ckt #2 to DISIS-2011-001 Interconnection Customers

#### Potential Upgrades Not in the Base Case

Any potential upgrades that do not have a Notification to Construct (NTC) have not been included in the base case. These upgrades include any identified in the SPP Extra-High Voltage (EHV) overlay plan, or any other SPP planning study other than the upgrades listed above in the previous section.

#### **Regional Groupings**

The interconnection requests listed in Appendix A were grouped together in fifteen different regional groups based on geographical and electrical impacts. These groupings are shown in Appendix C.

To determine interconnection impacts, fifteen different dispatch variations of the spring base case models were developed to accommodate the regional groupings.

**Power Flow** - For each group, the various wind generating plants were modeled at 80% nameplate of maximum generation. The wind generating plants in the other areas were modeled at 20% nameplate of maximum generation. This process created fifteen different scenarios with each group being studied at 80% nameplate rating. These projects were dispatched as Energy Resources with equal distribution across the SPP footprint. Certain projects that requested Network Resource Interconnection Service were dispatched in an additional analysis into the balancing authority of the interconnecting transmission owner. This method allowed for the identification of network constraints that were common to the regional groupings that could then in turn have the mitigating upgrade cost allocated throughout the entire cluster. Each interconnection request was also modeled separately at 100% nameplate for certain analyses.

Peaking units were not dispatched in the 2011 spring model. To study peaking units' impacts, the 2012 summer and winter, 2016 summer and winter, and 2021 summer peak models were chosen and peaking units were modeled at 100% of the nameplate rating and wind generating facilities were modeled at 10% of the nameplate rating. Each interconnection request was also modeled separately at 100% nameplate for certain analyses.

**Stability** - For each group, all interconnection requests were studied at 100% nameplate output while the other groups were dispatched at 20% output for wind requests and 100% output for fossil requests.

## Identification of Network Constraints

The initial set of network constraints were found by using PTI MUST First Contingency Incremental Transfer Capability (FCITC) analysis on the entire cluster grouping dispatched at the various levels mentioned above. These constraints were then screened to determine if any of the generation interconnection requests had at least a 20% Distribution Factor (DF) upon the constraint. Constraints that measured at least a 20% DF from at least one interconnection request were considered for mitigation. Interconnection Requests that were being studied for Network Resource Interconnection Service were studied in the additional NRIS analysis to determine if any constraint had at least a 3% DF. If so, these constraints were considered for mitigation.

### **Determination of Cost Allocated Network Upgrades**

Cost Allocated Network Upgrades of wind generation interconnection requests were determined using the 2011 spring model. Cost Allocated Network Upgrades of peaking units was determined using the 2016 summer peak model. A MUST FCITC analysis was performed to determine the Power Transfer Distribution Factors (PTDF), a distribution factor with no contingency that each generation interconnection request had on each new upgrade. The impact each generation interconnection request had on each upgrade project was weighted by the size of each request. Finally the costs due by each request for a particular project were then determined by allocating the portion of each request's impact over the impact of all affecting requests.

For example, assume that there are three Generation Interconnection requests, X, Y, and Z that are responsible for the costs of Upgrade Project '1'. Given that their respective PTDF for the project have been determined, the cost allocation for Generation Interconnection request 'X' for Upgrade Project 1 is found by the following set of steps and formulas:

• Determine an Impact Factor on a given project for all responsible GI requests:

| Request X Impact Factor on Upgrade Project 1 | = | PTDF(%)(X) * MW(X) | = | X1 |
|----------------------------------------------|---|--------------------|---|----|
| Request Y Impact Factor on Upgrade Project 1 | = | PTDF(%)(Y) * MW(Y) | = | Y1 |
| Request Z Impact Factor on Upgrade Project 1 | = | PTDF(%)(Z) * MW(Z) | = | Z1 |

Southwest Power Pool, Inc.

Determine each request's Allocation of Cost for that particular project:

Request X's Project 1 Cost Allocation (\$) = Network Upgrade Project 1 Cost(\$) \* X1 X1 + Y1 + Z1

Repeat previous for each responsible GI request for each Project

The cost allocation of each needed Network Upgrade is determined by the size of each request and its impact on the given project. This allows for the most efficient and reasonable mechanism for sharing the costs of upgrades.

#### **Credits for Amounts Advanced for Network Upgrades**

Interconnection Customer shall be entitled to credits in accordance with Attachment Z1 of the SPP Tariff for any Network Upgrades including any tax gross-up or any other tax-related payments associated with the Network Upgrades, and not refunded to the Interconnection Customer.

### **Interconnection Facilities**

The requirement to interconnect the 479.0 MW of generation into the existing and proposed transmission systems in the affected areas of the SPP transmission footprint consist of the necessary cost allocated shared facilities listed in Appendix F by upgrade. The interconnection requirements for the cluster total \$58,450,000. Interconnection Facilities specific to each generation interconnection request are listed in Appendix E.

A list of constraints with greater than or equal to a 20% OTDF that were identified and used for mitigation are listed in Appendix G. Other Network Constraints in the MIPU, NPPD, OKGE, SPS, SUNC, and WERE transmission systems that were identified are shown in Appendix H. With a defined source and sink in a TSR, this list of Network Constraints will be refined and expanded to account for all Network Upgrade requirements.

A preliminary one-line drawing for each generation interconnection request are listed in Appendix D. Figure 1 depicts the major transmission line Network Upgrades needed to support the interconnection of the generation amounts requested in this study.

### **Power Flow**

#### **Power Flow Analysis Methodology**

The Southwest Power Pool (SPP) Criteria states that:

"The transmission system of the SPP region shall be planned and constructed so that the contingencies as set forth in the Criteria will meet the applicable *NERC Reliability Standards* for transmission planning. All MDWG power flow models shall be tested to verify compliance with the System Performance Standards from NERC Table 1 – Category A." The ACCC function of PSS/E was used to simulate single contingencies in portions or all of the modeled control areas of American Electric Power (AEPW), Kansas City Power and Light (KCPL), Missouri Public Service (MIPU), Nebraska Public Power District (NPPD), Oklahoma Gas and Electric (OKGE), Southwestern Public Service (SPS), Sunflower Electric Power Corporation (SUNC), and Westar Energy (WERE) and other control areas were applied and the resulting scenarios analyzed. This satisfies the "more probable" contingency testing criteria mandated by NERC and the SPP criteria.

#### **Power Flow Analysis**

A power flow analysis was conducted for each Interconnection Customer's facility using modified versions of the 2011 spring peak, 2012 summer and winter peak, the 2016 summer and winter peak, and the 2021 summer peak models. The output of the Interconnection Customer's facility was offset in each model by a reduction in output of existing online SPP generation. This method allows the request to be studied as an Energy Resource (ER) Interconnection Request. The available seasonal models used were through the 2021 Summer Peak. Certain requests that requested Network Resource Interconnection Service (NRIS) had an additional analysis conducted for sinking the energy in the interconnecting Transmission Owner's balancing authority.

This analysis was conducted assuming that previous queued requests in the immediate area of these interconnect requests were in-service. The analysis of each Customer's project indicates that additional criteria violations will occur on the MIPU, NPPD, MIDW, OKGE, OPPD, SPS, SUNC, WERE and WFEC transmission systems under steady state and contingency conditions in the peak seasons.

#### **Cluster Group 1 (Woodward Area)**

In addition to the 4,742.0 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

#### **Cluster Group 2 (Hitchland Area)**

In addition to the 4,426.3 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

#### **Cluster Group 3 (Spearville Area)**

In addition to the 5,390.7 MW of previously queued generation in the area, 180.0 MW of new interconnection service was studied. Constraints were seen in this area around the North Hays – Vine Street 115kV line and the North Hays – Knoll 115kV line. To mitigate this, the lines will need to be rebuilt. A second 230/115kV transformer will also be needed at the South Hays substation. Another constraint was seen on the Smoky Hills – Summit 230kV line, requiring the line to be rebuilt.

#### Cluster Group 4 (Mingo/NW Kansas Group)

In addition to the 924.2 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

#### **Cluster Group 5 (Amarillo Area)**

In addition to the 2,132.6 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

#### Cluster Group 6 (South Texas Panhandle/New Mexico)

In addition to the 2,380.7 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

#### Cluster Group 7 (Southwestern Oklahoma)

In addition to the 2,895.8 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

#### **Cluster Group 8 (South Central Kansas/North Oklahoma)**

In addition to the 3,356.0 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

#### **Cluster Group 9 (Northeast Nebraska)**

In addition to the 1,009.3 MW of previously queued generation in the area, 99.0 MW of new interconnection service was studied. The Beatrice Power Station – Clatonia 115kV line was seen to be overloading, the line will need to be completely rebuilt.

#### **Cluster Group 10 (North Nebraska)**

In addition to the 345.3 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

#### **Cluster Group 11 (North Central Kansas)**

In addition to the 1,495.1 MW of previously queued generation in the area, 200.0 MW of new interconnection service was studied. A constraint was seen on the Smoky Hills – Summit 230kV line, requiring it to be rebuilt.

#### **Cluster Group 12 (Northwest Arkansas)**

In addition to the 0.0 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

#### **Cluster Group 13 (Northwest Missouri)**

In addition to the 2,872.0 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

#### **Cluster Group 14 (South Central Oklahoma)**

In addition to the 1051.7 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

#### **Cluster Group 15 (Southwest Nebraska)**

In addition to the 89.7 MW of previously queued generation in the area, 0.0 MW of new interconnection service was studied. No new constraints were found in this area.

### **Stability Analysis**

A stability analysis was conducted for each Interconnection Customer's facility using modified versions of the 2011 summer and 2011 winter peak models. <u>The stability analysis was conducted with all upgrades in service that were identified in the power flow analysis</u>. For each group, the interconnection requests were studied at 100% nameplate output while the other groups were dispatched at 20% output for wind requests and 100% output for fossil requests. The output of the Interconnection Customer's facility was offset in each model by a reduction in output of existing online SPP generation. The following synopsis is included for each group. The entire stability study for each group can be found in the Appendices.

#### **Cluster Group 1 (Woodward Area)**

There was no stability analysis conducted in the Woodward area due to no requests in the area.

#### **Cluster Group 2 (Hitchland Area)**

There was no stability analysis conducted in the Hitchland area due to no requests in the area.

#### **Cluster Group 3 (Spearville Area)**

The Group 3 stability study was conducted by S&C Electric Company. The stability analysis indicates that requests in Group 3 will be stable for each contingency specified by SPP and the nearby areas will retain angular, frequency and voltage stability.

With the power factor requirements and all network upgrades in service, all interconnection request in Group 3 will meet FERC Order #661A low voltage ride through (LVRT) requirements.

| Dogwoot      | Size Generator |               | Deint of Interconnection            | Power Factor<br>Requirement at POI |                        |  |
|--------------|----------------|---------------|-------------------------------------|------------------------------------|------------------------|--|
| Request      | (MW)           | Model         | el                                  | Lagging<br>(supplying)             | Leading<br>(absorbing) |  |
| GEN-2010-061 | 179.4          | Siemens 2.3MW | Tap Post Rock – Spearville<br>345kV | 0.95                               | 0.95                   |  |

**Power Factor Requirements:** 

\*As reactive power is required for all projects, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the point of interconnection.

#### Cluster Group 4 (Mingo Area)

There was no stability analysis conducted in the Mingo area due to no requests in the area.

#### **Cluster Group 5 (Amarillo Area)**

There was no stability analysis conducted in the Amarillo area due to no requests in the area.

#### Cluster Group 6 (South Texas Panhandle/New Mexico)

There was no stability analysis conducted in the South Texas Panhandle/New Mexico area due to no requests in the area.

#### Cluster Group 7 (Southwest Oklahoma Area)

There was no stability analysis conducted in the Southwest Oklahoma area due to no requests in the area.

#### **Cluster Group 8 (South Central Kansas/North Oklahoma)**

There was no stability analysis conducted in the South Central Kansas/North Oklahoma area due to no requests in the area.

#### Cluster Group 9 (Northeast Nebraska Area)

There was no stability analysis conducted in the Northwest Arkansas area due to no requests in the area.

#### Cluster Group 10 (North Nebraska Area)

There was no stability analysis conducted in the North Nebraska area due to no requests in the area.

#### **Cluster Group 11 (North Central Kansas Area)**

The Group 11 stability analysis was conducted by Pterra Consulting . There are no impacts on the stability performance of the SPP system for the contingencies simulated, the studied request stays on-line and stable. With the power factor requirements and all network upgrades in service, all interconnection request in Group 11 will meet FERC Order #661A low voltage ride through (LVRT) requirements and the transmission system will remain stable.

| Desucet      | Size | Generator<br>Model | Deint of latence and the        | Power Factor<br>Requirement at POI |                        |  |
|--------------|------|--------------------|---------------------------------|------------------------------------|------------------------|--|
| Request      | (MW) |                    | Point of interconnection        | Lagging<br>(supplying)             | Leading<br>(absorbing) |  |
| GEN-2011-001 | 200  | Siemens 2.3MW      | Tap Post Rock – Axtell<br>345kV | 0.97                               | 0.98                   |  |

#### Cluster Group 12 (Northwest Arkansas Area)

There was no stability analysis conducted in the Northwest Arkansas area due to no requests in the area.

#### Cluster Group 13 (Northwest Missouri Area)

The Group 13 stability analysis was conducted by Mitsubishi Electric Power Products, Inc (MEPPI). There are no impacts on the stability performance of the SPP system for the contingencies simulated, the studied request stays on-line and stable. With the power factor requirements and all network upgrades in service, all interconnection request in Group 9 will meet FERC Order #661A low voltage ride through (LVRT) requirements and the transmission system will remain stable.

#### Power Factor Requirements:

| Pequest      | Size | Generator        | Point of Interconnection                         | Power Factor<br>Requirement at POI |                        |  |
|--------------|------|------------------|--------------------------------------------------|------------------------------------|------------------------|--|
| nequest      | (MW) | Model            | Point of interconnection                         | Lagging<br>(supplying)             | Leading<br>(absorbing) |  |
| GEN-2010-044 | 99   | Siemens<br>2.3MW | Harbine 115kV or Tap<br>Harbine – Beatrice 115kV | 1.00                               | 0.95                   |  |

\*As reactive power is required for all projects, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the point of interconnection.

#### **Cluster Group 14 (South Central Oklahoma)**

There was no stability analysis conducted in the South Central Oklahoma area due to no requests in the area.

#### Cluster Group 15 (Southwest Nebraska Area)

There was no stability analysis conducted in the Southwest Nebraska area due to no requests in the area.

### Conclusion

The minimum cost of interconnecting 479.0 MW of new interconnection requests included in this Preliminary Interconnection System Impact Study is estimated at \$58,450,000 for the Allocated Network Upgrades and Transmission Owner Interconnection Facilities are listed in Appendix E and F. These costs do not include the cost of upgrades of other transmission facilities listed in Appendix I which are Network Constraints.

These interconnection costs do not include any cost of Network Upgrades determined to be required by short circuit analysis. These studies will be performed if the Interconnection Customer executes the appropriate Interconnection System Impact Study Agreement and provides the required data along with demonstration of Site Control and the appropriate deposit. At the time of the System Impact Cluster Study, a better determination of the interconnection facilities may be available.

The required interconnection costs listed in Appendices E, and F, and other upgrades associated with Network Constraints do not include all costs associated with the deliverability of the energy to final customers. These costs are determined by separate studies if the Customer submits a Transmission Service Request (TSR) through SPP's Open Access Same Time Information System (OASIS) as required by Attachment Z1 of the SPP Open Access Transmission Tariff (OATT).

## Appendix

### A. Generation Interconnection Requests Considered for Impact Study

| Request      | Amount | Service | Area | Requested Point of<br>Interconnection | Proposed Point of<br>Interconnection | Requested<br>In-Service<br>Date | In Service<br>Date<br>Delayed<br>Until no<br>earlier<br>than |
|--------------|--------|---------|------|---------------------------------------|--------------------------------------|---------------------------------|--------------------------------------------------------------|
| GEN-2010-044 | 99.0   | ER/NR   | NPPD | Harbine 115kV                         | Tap Harbine – Beatrice 115kV         | 11/01/2012                      | 12/31/2014                                                   |
| GEN-2010-061 | 180.0  | ER/NR   | SUNC | Tap Post Rock – Spearville<br>345kV   | Tap Post Rock – Spearville<br>345kV  | 12/31/2012                      | 12/31/2014                                                   |
| GEN-2011-001 | 200.0  | ER/NR   | SUNC | Tap Post Rock – Axtell 345kV          | GEN-2010-016 Tap 345kV               | 06/30/2013                      | 12/31/2014                                                   |
| TOTAL        | 479.0  |         |      |                                       |                                      |                                 |                                                              |

### **B: Prior Queued Interconnection Requests**

| Request          | Amount | Area   | Requested/Proposed Point of Interconnection                                       | Status or In-Service Date  |
|------------------|--------|--------|-----------------------------------------------------------------------------------|----------------------------|
| GEN-2001-014     | 96.0   | WFEC   | Fort Supply 138kV                                                                 | On-Line                    |
| GEN-2001-026     | 74.0   | WFEC   | Washita 138kV                                                                     | On-Line                    |
| GEN-2001-033     | 180.0  | SPS    | San Juan Mesa Tap 230kV                                                           | On-Line                    |
| GEN-2001-036     | 80.0   | SPS    | Caprock Tap 115kV                                                                 | On-Line                    |
| GEN-2001-037     | 100.0  | OKGE   | Windfarm Switching 138kV                                                          | On-Line                    |
| GEN-2001-039A    | 105.0  | MKEC   | Tap Greensburg - Judson-Large 115kV                                               | On Schedule for 2011       |
| GEN-2001-039M    | 100.0  | SUNC   | Central Plains Tap 115kV                                                          | On-Line                    |
| GEN-2002-004     | 200.0  | WERE   | Latham 345kV                                                                      | On-Line at 150MW           |
| GEN-2002-005     | 120.0  | WFEC   | Red Hills Tap 138kV                                                               | On-Line                    |
| GEN-2002-008     | 240.0  | SPS    | Hitchland 345kV                                                                   | On-Line at 120MW           |
| GEN-2002-009     | 80.0   | SPS    | Hansford County 115kV                                                             | On-Line                    |
| GEN-2002-022     | 240.0  | SPS    | Bushland 230kV                                                                    | On-Line at 160MW           |
| GEN-2002-025A    | 150.0  | MKEC   | Spearville 230kV                                                                  | On-Line at 100.5MW         |
| GEN-2003-004     | 100.0  | WEEC   | Washita 138kV                                                                     | On-Line                    |
| GEN-2003-005     | 100.0  | WEEC   | Anadarko - Paradise 138kV                                                         | On Line                    |
| GEN-2003-006A    | 200.0  | MKEC   | Fim Creek 230kV                                                                   | On-Line                    |
| GEN-2003-013     | 198.0  | SPS    | Hitchland - Einney 345kV                                                          | On Schedule for 2012       |
| GEN-2003-019     | 250.0  |        | Smoky Hills Tan 230kV                                                             | On-Line                    |
| GEN-2003-010     | 160.0  | SDS    | Martin 115kV                                                                      | On-Line at 80MW            |
| GEN-2003-020     | 120.0  | ΔED\\/ | Wachita 138V                                                                      | On-Line                    |
| GEN 2004 022     | 20.6   |        | Washita 130KV                                                                     | On-Line                    |
| GEN-2004-025     | 154 5  | MKEC   | Spoorville 220k/                                                                  | On Schodulo for 2011       |
| GEN-2004-014     | 134.5  |        | Weshite 128W                                                                      |                            |
| GEN-2004-020     | 27.0   | AEPW   | Washita 138KV                                                                     | On-Line                    |
| GEN-2005-005     | 30.6   | WFEC   | Washita 138KV                                                                     | Un-Line                    |
| GEN-2005-005     | 18.0   | OKGE   | Windiami Tap 138KV                                                                |                            |
| GEN-2005-008     | 120.0  | OKGE   | Woodward 138KV                                                                    | On-Line                    |
| GEN-2005-012     | 250.0  | SUNC   | Spearville 345kv                                                                  | On Schedule for 2012       |
| GEN-2005-013     | 201.0  | WERE   | Tap Latnam - Neosno                                                               | On Schedule for 2012       |
| GEN-2005-017     | 340.0  | 5P5    | Tap Hitchland - Potter County 345kV                                               | On Suspension              |
| GEN-2006-002     | 101.0  | AEPW   |                                                                                   | Un-Line                    |
| GEN-2006-006     | 205.5  | IVIKEC | Spearville 230kV                                                                  |                            |
| GEN-2006-014     | 300.0  | MIPU   | Tap Maryville – Clarinda and tie Midway (WFARMS) 161KV                            | On Suspension              |
| GEN-2006-017     | 300.0  | MIPU   | Tap Maryville – Clarinda and tie Midway (WFARMS) 161KV                            | On Suspension              |
| GEN-2006-018     | 170.0  | SPS    |                                                                                   | On Schedule for 2011       |
| GEN-2006-0205    | 18.9   | SPS    |                                                                                   | On Schedule for 12/31/2011 |
| GEN-2006-020N    | 42.0   | NPPD   | Bioomfield 115kV                                                                  | On-Line<br>On-Line         |
| GEN-2006-021     | 101.0  | INIKEC | Flat Ridge Tap 138KV                                                              | Un-Line                    |
| GEN-2006-022     | 150.0  | INIKEC |                                                                                   | Un Suspension              |
| GEN-2006-024S    | 19.8   | WFEC   | South Buffalo Tap 69kV                                                            | On-Line                    |
| GEN-2006-026     | 502.0  | SPS    | Hobbs 230kV                                                                       | On-Line                    |
| GEN-2006-031     | /5.0   | MIDW   | Knoll 115kV                                                                       | On-Line                    |
| GEN-2006-032     | 200.0  | MIDW   | South Hays 230kV                                                                  | On Suspension              |
| GEN-2006-034     | 81.0   | SUNC   | Tap Kanarado - Sharon Springs 115kV                                               | On Suspension              |
| GEN-2006-035     | 225.0  | AEPW   | Tap Grapevine - Elk City 230kV                                                    | On Schedule for 2011       |
| GEN-2006-037N1   | 75.0   | NPPD   | Broken Bow 115kV                                                                  | On Suspension              |
| GEN-2006-038N019 | 80.0   | NPPD   | Petersburg 115kV                                                                  | On-Line                    |
| GEN-2006-038     | 750.0  | WFEC   | Hugo 345kV                                                                        | On Suspension              |
| GEN-2006-038N005 | 80.0   | NPPD   | Broken Bow 115kV                                                                  | On-Line                    |
| GEN-2006-039     | 400.0  | SPS    | Tap and Tie both Potter County - Plant X 230kV<br>and Bushland - Deaf Smith 230kV | On Suspension              |
| GEN-2006-040     | 108.0  | SUNC   | Mingo 115kV                                                                       | On Schedule for 2010       |
| GEN-2006-043     | 99.0   | AEPW   | Grapevine - Elk City 230kV                                                        | On Line                    |
| GEN-2006-044     | 370.0  | SPS    | Hitchland 345kV                                                                   | On Schedule for 2014       |
| GEN-2006-044N    | 40.5   | NPPD   | Tap Neligh – Petersburg 115kV                                                     | On Schedule for 12/2011    |
|                  | 100 F  | NIDOD  | CTN 2000 DOCTOR 2001 V                                                            |                            |
| GEN-2006-044N02  | 100.5  | NPPD   | GEIN-ZUUX-UXDINUZ ZJUKV                                                           | (DISIS-2010-001)           |
|                  | 240.0  | CDC    | Tap and Tie both Potter County - Plant X 230kV                                    |                            |
| GEIN-2006-045    | 240.0  | 242    | and Bushland - Deaf Smith 230kV                                                   | Un Suspension              |
| GEN-2006-046     | 131.0  | OKGE   | Dewey 138kV                                                                       | On-Line                    |

#### Appendix B: Prior Queued Generation Interconnection Requests

| Request         | Amount | Area | Requested/Proposed Point of Interconnection                                       | Status or In-Service Date       |
|-----------------|--------|------|-----------------------------------------------------------------------------------|---------------------------------|
| GEN-2006-047    | 240.0  | SPS  | Tap and Tie both Potter County - Plant X 230kV<br>and Bushland - Deaf Smith 230kV | On Schedule for 2013            |
| GEN-2006-049    | 400.0  | SPS  | Hitchland - Finney 345kV                                                          | On Schedule for 2014            |
| GEN-2007-002    | 160.0  | SPS  | Grapevine 115kV                                                                   | On Suspension                   |
| GEN-2007-006    | 160.0  | OKGE | Roman Nose 138kV                                                                  | On Suspension                   |
| GEN-2007-011    | 135.0  | SUNC | Syracuse 115kV                                                                    | On Schedule                     |
| GEN-2007-011N08 | 81.0   | NPPD | Bloomfield 115kV                                                                  | On-Line                         |
| GEN-2007-013    | 99.0   | SUNC | Selkirk 115kV                                                                     | On Suspension                   |
| GEN-2007-015    | 135.0  | WERE | Tap Humboldt – Kelly 161kV                                                        | On Suspension                   |
| GEN-2007-017    | 100.5  | MIPU | Tap Maryville – Clarinda and tie Midway (WFARMS) 161kV                            | On Suspension                   |
| GEN-2007-021    | 201.0  | OKGE | Tatonga 345kV                                                                     | On Schedule for 2014            |
| GEN-2007-025    | 300.0  | WERE | Tap Woodring – Wichita 345kV                                                      | On Suspension                   |
| GEN-2007-032    | 150.0  | WFEC | Tap Clinton Junction – Clinton 138kV                                              | OnSchedule for 2012             |
| GEN-2007-038    | 200.0  | SUNC | Spearville 345kV                                                                  | On Schedule for 2015            |
| GEN-2007-040    | 200.1  | SUNC | Tap Holcomb – Spearville 345kV                                                    | On Schedule for 2012            |
| GEN-2007-043    | 200.0  | OKGE | Tap Lawton Eastside – Cimarron 345kV                                              | On-Line (100MW)                 |
| GEN-2007-044    | 300.0  | OKGE | Tatonga 345kV                                                                     | On Schedule for 2014            |
| GEN-2007-046    | 199.5  | SPS  | Tap & Tie Texas County – Hitchland & DWS Frisco Tap –<br>Hitchland 115kV          | On Schedule for 2014            |
| GEN-2007-048    | 400.0  | SPS  | Tap Amarillo South – Swisher 230kV                                                | On Schedule for 2014            |
| GEN-2007-050    | 170.0  | OKGE | Woodward 138kV                                                                    | On-Line                         |
| GEN-2007-051    | 200.0  | WFEC | Mooreland 138kV                                                                   | On Schedule for 2014            |
| GEN-2007-052    | 150.0  | WFEC | Anadarko 138kV                                                                    | On-Line                         |
| GEN-2007-053    | 110.0  | MIPU | Tap Maryville – Clarinda and tie Midway (WFARMS) 161kV                            | On Schedule for 2013            |
| GEN-2007-057    | 34.5   | SPS  | Moore County East 115kV                                                           | On Schedule for 2014            |
| GEN-2007-062    | 765.0  | OKGE | Woodward 345kV                                                                    | On Schedule for 2014            |
| GEN-2008-003    | 101.0  | OKGE | Woodward EHV 138kV                                                                | On-Line                         |
| GEN-2008-008    | 60.0   | SPS  | Graham 115kV                                                                      | On Schedule for 2014            |
| GEN-2008-009    | 60.0   | SPS  | San Juan Mesa Tap 230kV                                                           | On Schedule for 2014            |
| GEN-2008-013    | 300.0  | OKGE | Tap Woodring – Wichita 345kV                                                      | On Schedule for 2013            |
| GEN-2008-014    | 150.0  | SPS  | Tap Tuco – Oklaunion 345kV                                                        | On Schedule for 2014            |
| GEN-2008-016    | 248.0  | SPS  | Grassland 230kV                                                                   | IA Pending                      |
| GEN-2008-017    | 300.0  | SUNC | Setab 345kV                                                                       | On Schedule for 2012            |
| GEN-2008-018    | 405.0  | SPS  | Finney 345kV                                                                      | IA Pending                      |
| GEN-2008-019    | 300.0  | OKGE | Tatonga 345kV                                                                     | On Schedule for 2015            |
| GEN-2008-021    | 42.0   | WERE | Wolf Creek 345kV                                                                  | IA Pending                      |
| GEN-2008-022    | 300.0  | SPS  | Tap Eddy – Tolk 345kV                                                             | IA Pending                      |
| GEN-2008-023    | 150.0  | AEPW | Hobart Junction 138kV                                                             | On Schedule for 2012            |
| GEN-2008-025    | 101.2  | SUNC | Ruleton 115kV                                                                     | On Schedule for 2015            |
| GEN-2008-029    | 250.5  | OKGE | Woodward EHV 138kV                                                                | On Schedule for 2014            |
| GEN-2008-037    | 101.0  | WFEC | Tap Washita – Blue Canyon 138kV                                                   | IA Pending                      |
| GEN-2008-044    | 197.8  | OKGE | Latonga 345KV                                                                     | IA Pending                      |
| GEN-2008-046    | 200.0  | OKGE | Sunnyside 345kV                                                                   | IA Pending                      |
| GEN-2008-047    | 300.0  | SPS  | Tap Hitchiand - woodward 345kv                                                    | IA Pending                      |
| GEN-2008-031    | 522.0  | OKCE | Poller 343KV                                                                      |                                 |
| GEN-2008-071    | 100 5  | MKEC | Tap Judson Large - Cudaby 115k/                                                   | On Schodulo for 2012            |
| GEN-2008-079    | 200.0  | NPPD | Tap Ft, Bandall – Columbus 230kV                                                  | On Schedule for 2012            |
| GEN-2008-088    | 50.6   | SPS  | Vega 69kV                                                                         |                                 |
| GEN-2008-092    | 201.0  | MIDW | Knoll 115kV                                                                       | IA Pending                      |
| GEN-2008-098    | 100.8  | WERE | Tan Wolf Creek – LaCygne 345kV                                                    | IA Pending                      |
| GEN-2008-110    | 299.2  | SPS  | Hitchland 345kV                                                                   | IA Pending                      |
| GEN-2008-1190   | 60.0   | OPPD | Tap Humboldt – Kelly 161kV                                                        | On-Line                         |
| GEN-2008-1230   | 89.7   | NPPD | Tap Guide - Pauline 115kV                                                         | IA Pending                      |
| GEN-2008-124    | 200.1  | SUNC | Spearville 345kV                                                                  | On Schedule for 2014            |
| GEN-2008-127    | 200.1  | WERF | Tap Sooner – Rose Hill 345kV                                                      | On Schedule for 2012            |
| GEN-2008-129    | 80.0   | MIPU | Pleasant Hill 161kV                                                               | On-Line                         |
| GEN-2009-008    | 199.5  | SUNC | South Hays 230kV                                                                  | IA Pending                      |
| GEN-2009-011    | 50.0   | MKEC | Tap Plainville – Phillipsburg 115kV                                               | On Schedule for 2014            |
| GEN-2009-016    | 141.0  | AEPW | Falcon Road 138kV                                                                 | On Schedule for 2012            |
| GEN-2009-017    | 60.0   | SPS  | Tap Pembrook – Stiles 138kV                                                       | Under Study<br>(DISIS-2009-001) |
| GEN-2009-020    | 48.6   | MIDW | Tap Bazine – Nekoma 69kV                                                          | IA Pending                      |
| GEN-2009-025    | 60.0   | OKGE | Tap Deer Creek – Sinclair 69kV                                                    | On Suspension                   |
| GEN-2009-030    | 100.8  | WFEC | Weatherford 138kV                                                                 | IA Pending                      |

| Request       | Amount | Area | Requested/Proposed Point of Interconnection      | Status or In-Service Date |
|---------------|--------|------|--------------------------------------------------|---------------------------|
| GEN-2009-040  | 73.8   | WERE | Tap Smittyville - Knob Hill 115kV                | On Schedule for 2012      |
| GEN-2009-060  | 84.0   | WFEC | Gotebo 69kV                                      | IA Pending                |
| GEN-2009-062  | 115.0  | MKEC | Hugoton 115kV                                    | Under Study               |
|               | 115.0  |      |                                                  | (DISIS-2010-001)          |
| GEN-2009-067S | 20.0   | SPS  | 7 Rivers 69kV                                    | IA Pending                |
| GEN-2010-001  | 300.0  | OKGE | Tap Hitchland – Woodward 345kV                   | Under Study               |
| CEN 2010 002  | 100.0  |      | CEN 2008 009 24514                               | (DISIS-2010-002           |
| GEN-2010-003  | 200.0  | WERE | GEN-2008-098-345KV                               | IA Pending                |
| GEN-2010-005  | 205.0  |      | GEN-2007-025 545KV                               | On-Line                   |
| GEN-2010-000  | 73.8   | SPS  | Tap Pringle - Riverview 115kV                    | IA Pending                |
| GEN-2010-008  | 64.4   | WFEC | Fargo 69kV                                       | IA Pending                |
| GEN-2010-009  | 165.6  | SUNC | Gray County 345kV                                | IA Pending                |
| GEN-2010-010  | 100.5  | NPPD | Madison County 230kV                             | IA Pending                |
| GEN-2010-011  | 29.7   | OKGE | Tatonga 345kV                                    | On Schedule for 2011      |
| GEN-2010-014  | 360.0  | SPS  | Hitchland 345kV                                  | IA Pending                |
| GEN-2010-015  | 200.1  | SUNC | Spearville 345kV                                 | IA Pending                |
| GEN-2010-016  | 199.8  | SUNC | Tap Spearville - Knoll 345kV                     | IA Pending                |
| GEN-2010-020  | 20.0   | SPS  | Roswell 115kV                                    | Under Study               |
|               |        |      |                                                  | (DISIS-2011-001)          |
| GEN-2010-029  | 450.0  | SUNC | Spearville 345kV                                 | Under Study               |
|               |        |      |                                                  | (DISIS-2011-001)          |
| GEN-2010-036  | 4.6    | WERE | 6 <sup>th</sup> Street 115kV                     | (DISIS-2010-002)          |
|               |        |      |                                                  | Under Study               |
| GEN-2010-040  | 300.0  | OKGE | Cimarron 345kV                                   | (DISIS-2010-002)          |
|               |        |      |                                                  | Under Study               |
| GEN-2010-041  | 10.5   | OPPD | S 1399 161kV                                     | (DISIS-2010-002)          |
| CEN 2010 042  | 220.0  | WEEC | Mooreland 129W                                   | Under Study               |
| GEN-2010-045  | 520.0  | WFEC |                                                  | (DISIS-2010-002)          |
| GEN-2010-045  | 197.8  | SUNC | Tap Holcomb – Spearville 345kV                   | Under Study               |
|               |        |      |                                                  | (DISIS-2010-002)          |
| GEN-2010-046  | 56.0   | SPS  | Tuco 230kV                                       | Under Study               |
|               |        |      |                                                  | (DISIS-2010-002)          |
| GEN-2010-047  | 72.0   | NPPD | Tap Beatrice – Harbine 115kV                     | (DISIS-2010-002)          |
|               |        |      |                                                  | Under Study               |
| GEN-2010-048  | 70.0   | MIDW | Tap Beach Station – Redline 115kV                | (DISIS-2010-002)          |
| CEN 2010 040  | 40 C   | CUNC |                                                  | Under Study               |
| GEN-2010-049  | 49.6   | SUNC | Pratt 115KV                                      | (DISIS-2010-002)          |
| GEN-2010-051  | 200.0  | NPPD | TAP TWIN CHURCH – HOSKINS 230kV                  | Under Study               |
| 0211 2010 001 | 200.0  |      |                                                  | (DISIS-2010-002)          |
| GEN-2010-052  | 301.3  | SUNC | FINNEY 345kV                                     | Under Study               |
|               |        |      |                                                  | (DISIS-2010-002)          |
| GEN-2010-053  | 199.8  | SUNC | COMANCHE 345kV                                   |                           |
|               |        |      |                                                  | (DISIS-2010-002)          |
| GEN-2010-055  | 4.5    | AEPW | Wekiwa 138kV                                     | (DISIS-2011-001)          |
|               |        |      |                                                  | Under Study               |
| GEN-2010-056  | 151.2  | MIPU | Tap Saint Joseph - Cooper 345kV                  | (DISIS-2011-001)          |
| GEN 2010 0E7  | 201.0  |      | Pice County 22010/                               | Under Study               |
| GEN-2010-037  | 201.0  |      |                                                  | (DISIS-2011-001)          |
| GEN-2010-058  | 20.0   | SPS  | Chaves County 115kV                              | Under Study               |
|               |        |      |                                                  | (DISIS-2011-001)          |
| GEN-2011-007  | 250.0  | OKGE | Tap Cimarron - Woodring 345kV (Matthewson 345kV) | Under Study               |
|               |        |      |                                                  | (DISIS-2011-001)          |
| GEN-2011-008  | 600.0  | SUNC | Clark County 345kV                               | (DISIS-2011-001)          |
|               |        |      |                                                  | Under Study               |
| GEN-2011-009  | 150.4  | AEPW | Hobart 138kV                                     | (DISIS-2011-001)          |
| CEN 2011 010  | 100.0  | OKCE |                                                  | Under Study               |
| GEN-2011-010  | 100.8  | OKGE |                                                  | (DISIS-2011-001)          |
| GEN-2011-011  | 50.0   | KCDI | latan 345kV                                      | Under Study               |
| JLIN-2011-011 | 50.0   |      |                                                  | (DISIS-2011-001)          |
| GEN-2011-012  | 104.5  | SPS  | Tap Moore County - Hitchland 230kV               | Under Study               |
|               |        |      |                                                  | (DISIS-2011-001)          |

| Request                        | Amount   | Area | Requested/Proposed Point of Interconnection | Status or In-Service Date       |
|--------------------------------|----------|------|---------------------------------------------|---------------------------------|
| GEN-2011-013                   | 101.7    | OKGE | Sunnyside 345kV                             | Under Study                     |
|                                | _        |      |                                             | (DISIS-2011-001)                |
| GEN-2011-014                   | 201.0    | OKGE | Tap Hitchland - Woodward 345kV              | Under Study<br>(DISIS 2011 001) |
|                                |          |      |                                             | Under Study                     |
| GEN-2011-015                   | 300.6    | OKGE | Tap Tatonga – Woodward 345kV                | (DISIS-2011-001)                |
| CEN 2011 016                   | 200.1    | SUNC | Spoon/illo 24Ek/                            | Under Study                     |
| GEN-2011-010                   | 200.1    | SUNC | spearville 345kv                            | (DISIS-2011-001)                |
| GEN-2011-017                   | 299.0    | SUNC | Tap Spearville - Knoll 345kV                | Under Study                     |
|                                |          |      |                                             | (DISIS-2011-001)                |
| GEN-2011-018                   | 73.6     | NPPD | Steele City 115kV                           | Under Study<br>(DISIS-2011-001) |
|                                |          |      |                                             | Under Study                     |
| GEN-2011-019                   | 299.0    | OKGE | Woodward 345kV                              | (DISIS-2011-001)                |
| GEN-2011-020                   | 200 0    | OKGE | Woodward 345kV                              | Under Study                     |
| GEN-2011-020                   | 255.0    | OKOL |                                             | (DISIS-2011-001)                |
| GEN-2011-021                   | 299.0    | SPS  | Tap Hitchland - Woodward 345kV              | Under Study                     |
|                                |          |      |                                             | (DISIS-2011-001)                |
| GEN-2011-022                   | 299.0    | SPS  | Hitchland 345kV                             | (DISIS-2011-001)                |
|                                |          |      |                                             | Under Study                     |
| GEN-2011-023                   | 299.0    | SUNC | Tap Clark - Spearville 345kV                | (DISIS-2011-001)                |
| GEN-2011-024                   | 200 0    | OKGE | Tatonga 345kV                               | Under Study                     |
| GEN 2011 024                   | 255.0    | OKOL |                                             | (DISIS-2011-001)                |
| GEN-2011-025                   | 82.3     | SPS  | Tap Floyd County - Crosby County 115kV      | Under Study                     |
|                                |          |      |                                             | (DISIS-2011-001)                |
| GEN-2011-027                   | 120.0    | NPPD | Tap Twin Church - Hoskins 230kV             | (DISIS-2011-001)                |
| Broken Bow                     | 8.3      | NPPD | Genoa 115kV                                 | On-Line                         |
| Ord                            | 10.8     | NPPD | Bloomfield 115kV                            | On-Line                         |
| Stuart                         | 2.1      | NPPD | Petersburg 115kV                            | On-Line                         |
| Ainsworth                      | 75.0     | NPPD | Ainsworth Wind Tap 115kV                    | On-Line                         |
| Rosebud                        | 30.0     | NPPD | St. Francis 115kV                           | On-Line                         |
| Wolf Creek                     | 1,170.0  | WERE | Wolf Creek 345kV                            | On-Line                         |
|                                | 4.0      |      | Genoa 115kv                                 | AECI guoup Affected Study       |
| ASGI-2010-001<br>ASGI-2010-002 | 201.0    | AECI | Lathron 161kV                               | AECI queue Affected Study       |
| ASGI-2010-002                  | 300.0    | AECI | Maryville 161kV                             | AECI queue Affected Study       |
| ASGI-2010-004                  | 50.0     | AECI | Tap Queen City – Lancaster 69kV             | AECI queue Affected Study       |
| ASGI-2010-005                  | 99.0     | AECI | Lathrop 161kV                               | AECI queue Affected Study       |
| ASGI-2010-006                  | 150.0    | AECI | Tap Fairfax – Fairfax Tap 138kV             | AECI queue Affected Study       |
| ASGI-2010-007                  | 150.0    | AECI | Tap Fairfax – Fairfax Tap 138kV             | AECI queue Affected Study       |
| ASGI-2010-008                  | 100.0    | AECI | Maryville 161kV                             | AECI queue Affected Study       |
| ASGI-2010-009                  | 201.0    | AECI | Osborn 161kV                                | AECI queue Affected Study       |
| ASGI-2010-010                  | 42.0     | 525  |                                             | Affected Study                  |
| A30-2010-011                   | 40.0     | 343  |                                             | Under Study                     |
| ASGI-2010-020                  | 50.0     | SPS  | Tap (LE) Tatum – (LE) Crossroads 69kV       | (DISIS-2010-002)                |
| ACCI 2010 021                  | 26.6     | CDC  | Tan (LE) Coundary Tan (LE) Anderson (OL)(   | Under Study                     |
| ASGI-2010-021                  | 30.0     | 582  | Tap (LE) Saunders Tap – (LE) Anderson 69kv  | (DISIS-2010-002)                |
| ASGI-2011-001                  | 28.8     | SPS  | LE-Lovington 115kV                          | Affected Study                  |
| ASGI-2011-002                  | 10.0     | SPS  | Herring 115kV                               | Affected Study                  |
| ASGI-2011-003                  | 10.0     | SPS  | Hendricks 115kV                             | Affected Study                  |
| Liano Estacado                 | 80.0     | 242  |                                             | On Line                         |
|                                |          |      | Etter 115kV                                 | On-Line                         |
| SPS DISTRIBUTED                | 90.0     | SPS  | Sherman 115kV                               | On-Line                         |
| -                              |          | -    | Spearman 115kV                              | On-Line                         |
|                                |          |      | Texas County 115kV                          | On-Line                         |
| Montezuma                      | 110.0    | MKEC | Haggard 115kV                               | On-Line                         |
| TOTAL                          | 33,223.1 |      |                                             |                                 |

### <u>C: Study Groupings</u>

| Cluster   | Request           | Amount  | Area | Proposed Point of Interconnection |
|-----------|-------------------|---------|------|-----------------------------------|
|           | GEN-2001-014      | 96.0    | WFEC | Fort Supply 138kV                 |
|           | GEN-2001-037      | 100.0   | OKGE | Windfarm Switching 138kV          |
|           | GEN-2005-005      | 18.0    | OKGE | Windfarm Tap 138kV                |
|           | GEN-2005-008      | 120.0   | OKGE | Woodward 138kV                    |
|           | GEN-2006-024S     | 20.0    | WFEC | South Buffalo Tap 69kV            |
|           | GEN-2006-046      | 131.0   | OKGE | Dewey 138kV                       |
|           | GEN-2007-006      | 160.0   | OKGE | Roman Nose 138kV                  |
|           | GEN-2007-021      | 201.0   | OKGE | Tatonga 345kV                     |
|           | GEN-2007-044      | 300.0   | OKGE | Tatonga 345kV                     |
|           | GEN-2007-050      | 170.0   | OKGE | Woodward 138kV                    |
| Drien     | GEN-2007-051      | 200.0   | WFEC | Mooreland 138kV                   |
| Ougued    | GEN-2007-062      | 765.0   | OKGE | Woodward 345kV                    |
| Queueu    | GEN-2008-003      | 101.0   | OKGE | Woodward EHV 138kV                |
|           | GEN-2008-019      | 300.0   | OKGE | Tatonga 345kV                     |
|           | GEN-2008-029      | 250.5   | OKGE | Woodward EHV 138kV                |
|           | GEN-2008-044      | 197.8   | OKGE | Tatonga 345kV                     |
|           | GEN-2010-008      | 64.4    | WFEC | Fargo 69kV                        |
|           | GEN-2010-011      | 29.7    | OKGE | Tatonga 345kV                     |
|           | GEN-2010-043      | 320.0   | WFEC | Mooreland 138kV                   |
|           | GEN-2011-015      | 300.6   | OKGE | Tap Tatonga – Woodward 345kV      |
|           | GEN-2011-019      | 299.0   | OKGE | Woodward 345kV                    |
|           | GEN-2011-020      | 299.0   | OKGE | Woodward 345kV                    |
|           | GEN-2011-024      | 299.0   | OKGE | Tatonga 345kV                     |
| PRIC      | R QUEUED SUBTOTAL | 4,742.0 |      |                                   |
| Group 1 W | OODWARD SUBTOTAL  | 0.0     |      |                                   |
|           | AREA TOTAL        | 4,742.0 |      |                                   |

| Cluster | Request            | Amount  | Area | Proposed Point of Interconnection                                     |
|---------|--------------------|---------|------|-----------------------------------------------------------------------|
|         | SPS Distribution   | 90.0    | SPS  | Various                                                               |
|         | ASGI-2010-011      | 48.0    | SPS  | Texas County 69kV                                                     |
|         | ASGI-2011-002      | 10.0    | SPS  | Herring 115kV                                                         |
|         | GEN-2002-008       | 240.0   | SPS  | Hitchland 345kV                                                       |
|         | GEN-2002-009       | 80.0    | SPS  | Hansford County 115kV                                                 |
|         | GEN-2003-013       | 198.0   | SPS  | Tap Hitchland - Finney 345kV                                          |
|         | GEN-2003-020       | 160.0   | SPS  | Martin 115kV                                                          |
|         | GEN-2005-017       | 340.0   | SPS  | Tap Hitchland - Potter County 345kV                                   |
|         | GEN-2006-020S      | 20.0    | SPS  | DWS Frisco Tap                                                        |
|         | GEN-2006-044       | 370.0   | SPS  | Hitchland 345kV                                                       |
| Prior   | GEN-2006-049       | 400.0   | SPS  | Tap Hitchland - Finney 345kV                                          |
| Queued  | GEN-2007-046       | 200.0   | SPS  | Tap & Tie Texas County – Hitchland & DWS Frisco Tap – Hitchland 115kV |
|         | GEN-2007-057       | 35.0    | SPS  | Moore County East 115kV                                               |
|         | GEN-2008-047       | 300.0   | SPS  | Tap Hitchland - Woodward 345kV                                        |
|         | GEN-2008-110       | 299.2   | SPS  | Hitchland 345kV                                                       |
|         | GEN-2010-001       | 300.0   | WFEC | GEN-2008-047 Tap 345kV                                                |
|         | GEN-2010-007       | 73.8    | SPS  | Tap Pringle – Riverview 115kV                                         |
|         | GEN-2010-014       | 358.8   | SPS  | Hitchland 345kV                                                       |
|         | GEN-2011-012       | 104.5   | SPS  | Tap Moore County - Hitchland 230kV                                    |
|         | GEN-2011-014       | 201.0   | SPS  | Tap Hitchland - Woodward 345kV                                        |
|         | GEN-2011-021       | 299.0   | SPS  | Tap Hitchland - Woodward 345kV                                        |
|         | GEN-2011-022       | 299.0   | SPS  | Hitchland 345kV                                                       |
| PRI     | OR QUEUED SUBTOTAL | 4,426.3 |      |                                                                       |
| Group 2 | HITCHLAND SUBTOTAL | 0.0     |      |                                                                       |
|         | AREA TOTAL         | 4,426.3 |      |                                                                       |

| Cluster    | Request                   | Amount  | Area | Proposed Point of Interconnection   |
|------------|---------------------------|---------|------|-------------------------------------|
|            | Montezuma                 | 110.0   | MKEC | Haggard 115kV                       |
|            | GEN-2001-039A             | 105.0   | MKEC | Tap Greensburg - Judson-Large 115kV |
|            | GEN-2002-025A             | 150.0   | MKEC | Spearville 230kV                    |
|            | GEN-2004-014              | 154.5   | MKEC | Spearville 230kV                    |
|            | GEN-2005-012              | 250.0   | SUNC | Spearville 345kV                    |
|            | GEN-2006-006              | 205.5   | MKEC | Spearville 230kV                    |
|            | GEN-2006-021              | 101.0   | MKEC | Flat Ridge Tap 138kV                |
|            | GEN-2006-022              | 150.0   | MKEC | Ninnescah Tap 115kV                 |
|            | GEN-2007-038              | 200.0   | SUNC | Spearville 345kV                    |
|            | GEN-2007-040              | 200.0   | SUNC | Tap Holcomb – Spearville 345kV      |
|            | GEN-2008-018              | 405.0   | SUNC | Finney 345kV                        |
|            | GEN-2008-079              | 100.5   | MKEC | Tap Fort Dodge – Cudahy 115kV       |
|            | GEN-2008-124              | 200.1   | SUNC | Spearville 345kV                    |
| Prior      | GEN-2009-062              | 115.0   | SUNC | Hugoton 115kV                       |
| Queued     | GEN-2010-009              | 165.6   | SUNC | Gray County 345kV                   |
|            | GEN-2010-015              | 200.1   | SUNC | Spearville 345kV                    |
|            | GEN-2010-016              | 199.8   | SUNC | Tap Spearville – Knoll 345kV        |
|            | GEN-2010-029              | 450.0   | SUNC | Spearville 345kV                    |
|            | GEN-2010-045              | 197.8   | SUNC | Tap Holcomb – Spearville 345kV      |
|            | GEN-2010-049              | 49.6    | MKEC | Pratt 115kV                         |
|            | GEN-2010-052              | 301.3   | SPS  | Finney 345kV                        |
|            | GEN-2010-053              | 199.8   | SUNC | Comanche 345kV                      |
|            | GEN-2010-061              | 180     | SUNC | Tap Post Rock – Spearville 345kV    |
|            | GEN-2011-001              | 200     | SUNC | Tap Post Rock – Axtell 345kV        |
|            | GEN-2011-008              | 600.0   | WFEC | Clark County 345kV                  |
|            | GEN-2011-016              | 200.1   | SUNC | Spearville 345kV                    |
|            | GEN-2011-017              | 299.0   | SUNC | Tap Spearville - Knoll 345kV        |
|            | GEN-2011-023              | 299.0   | SUNC | Tap Clark - Spearville 345kV        |
|            | PRIOR QUEUED SUBTOTAL     | 5,988.7 |      |                                     |
| Cluster    | Request                   | Amount  | Area | Proposed Point of Interconnection   |
| Spearville | GEN-2010-061              | 180.0   | SUNC | GEN-2010-016 Tap 345kV              |
| Gro        | oup 3 SPEARVILLE SUBTOTAL | 180.0   |      |                                     |
|            | AREA TOTAL                | 6,168.7 |      |                                     |

| Cluster                          | Request               | Amount | Area | Proposed Point of Interconnection   |
|----------------------------------|-----------------------|--------|------|-------------------------------------|
|                                  | GEN-2001-039M         | 100.0  | SUNC | Central Plains Tap 115kV            |
|                                  | GEN-2006-034          | 81.0   | SUNC | Tap Kanarado - Sharon Springs 115kV |
| Dulau                            | GEN-2006-040          | 108.0  | SUNC | Mingo 115kV                         |
| Queued                           | GEN-2007-011          | 135.0  | SUNC | Syracuse 115kV                      |
|                                  | GEN-2007-013          | 99.0   | SUNC | Selkirk 115kV                       |
|                                  | GEN-2008-017          | 300.0  | SUNC | Setab 345kV                         |
|                                  | GEN-2008-025          | 101.2  | SUNC | Ruleton 115kV                       |
|                                  | PRIOR QUEUED SUBTOTAL | 924.2  |      |                                     |
| Group 4 MINGO/NW KANSAS SUBTOTAL |                       | 0.0    |      |                                     |
|                                  | AREA TOTAL            | 924.2  |      |                                     |

| Cluster | Request                  | Amount  | Area | Proposed Point of Interconnection                                              |  |  |  |
|---------|--------------------------|---------|------|--------------------------------------------------------------------------------|--|--|--|
|         | Llano Estacado           | 80.0    | SPS  | SPS Llano Estacado Tap 115kV                                                   |  |  |  |
|         | GEN-2002-022             | 240.0   | SPS  | Bushland 230kV                                                                 |  |  |  |
|         | GEN-2006-039             | 400.0   | SPS  | Tap and Tie both Potter County - Plant X 230kV and Bushland - Deaf Smith 230kV |  |  |  |
| Duinu   | GEN-2006-045             | 240.0   | SPS  | Tap and Tie both Potter County - Plant X 230kV and Bushland - Deaf Smith 230kV |  |  |  |
| Prior   | GEN-2006-047             | 240.0   | SPS  | Tap and Tie both Potter County - Plant X 230kV and Bushland - Deaf Smith 230kV |  |  |  |
| Queueu  | GEN-2007-002             | 160.0   | SPS  | Grapevine 115kV                                                                |  |  |  |
|         | GEN-2007-048             | 400.0   | SPS  | Tap Amarillo South – Swisher 230kV                                             |  |  |  |
|         | GEN-2008-051             | 322.0   | SPS  | Potter 345kV                                                                   |  |  |  |
|         | GEN-2008-088             | 50.6    | SPS  | Vega 69kV                                                                      |  |  |  |
|         | PRIOR QUEUED SUBTOTAL    | 2,132.6 |      |                                                                                |  |  |  |
| G       | roup 5 AMARILLO SUBTOTAL | 0.0     |      |                                                                                |  |  |  |
|         | AREA TOTAL               | 2,132.6 |      |                                                                                |  |  |  |

| Cluster    | Request                  | Amount  | Area | Proposed Point of Interconnection          |
|------------|--------------------------|---------|------|--------------------------------------------|
|            | ASGI-2010-010            | 42.0    | SPS  | Lovington 115kV                            |
|            | ASGI-2010-020            | 50.0    | SPS  | Tap (LE) Tatum – (LE) Crossroads 69kV      |
|            | ASGI-2010-021            | 36.6    | SPS  | Tap (LE) Saunders Tap – (LE) Anderson 69kV |
|            | ASGI-2011-001            | 28.8    | SPS  | LE-Lovington 115kV                         |
|            | ASGI-2011-003            | 10.0    | SPS  | Hendricks 115kV                            |
|            | GEN-2001-033             | 180.0   | SPS  | San Juan Mesa Tap 230kV                    |
|            | GEN-2001-036             | 80.0    | SPS  | Caprock Tap 115kV                          |
|            | GEN-2006-018             | 170.0   | SPS  | Tuco 230kV                                 |
|            | GEN-2006-026             | 502.0   | SPS  | Hobbs 230kV                                |
| Drier      | GEN-2008-008             | 60.0    | SPS  | Graham 115kV                               |
| Oueued     | GEN-2008-009             | 60.0    | SPS  | San Juan Mesa Tap 230kV                    |
| Queueu     | GEN-2008-014             | 150.0   | SPS  | Tap Tuco – Oklaunion 345kV                 |
|            | GEN-2008-016             | 248.0   | SPS  | Grassland 230kV                            |
|            | GEN-2008-022             | 300.0   | SPS  | Tap Eddy – Tolk 345kV                      |
|            | GEN-2009-017             | 60.0    | SPS  | Tap Pembrook – Stiles 138kV                |
|            | GEN-2009-067S            | 20.0    | SPS  | 7 Rivers 69kV                              |
|            | GEN-2010-006             | 205.0   | SPS  | Jones 230kV                                |
|            | GEN-2010-020             | 20.0    | SPS  | Roswell 115kV                              |
|            | GEN-2010-046             | 56.0    | SPS  | Tuco 230kV                                 |
|            | GEN-2010-058             | 20.0    | SPS  | Chaves County 115kV                        |
|            | GEN-2011-025             | 82.3    | SPS  | Tap Floyd County - Crosby County 115kV     |
|            | PRIOR QUEUED SUBTOTAL    | 2,380.7 |      |                                            |
| Group 6 S- | TX Panhandle/NM SUBTOTAL | 0.0     |      |                                            |
|            | AREA TOTAL               | 2,380.7 |      |                                            |

| Cluster | Request                | Amount  | Area | Proposed Point of Interconnection                |
|---------|------------------------|---------|------|--------------------------------------------------|
|         | GEN-2001-026           | 74.0    | WFEC | Washita 138kV                                    |
|         | GEN-2002-005           | 120.0   | WFEC | Red Hills Tap 138kV                              |
|         | GEN-2003-004           | 101.0   | WFEC | Washita 138kV                                    |
|         | GEN-2003-005           | 100.0   | WFEC | Anadarko - Paradise 138kV                        |
|         | GEN-2003-022           | 120.0   | AEPW | Washita 138kV                                    |
|         | GEN-2004-020           | 27.0    | AEPW | Washita 138kV                                    |
|         | GEN-2004-023           | 21.0    | WFEC | Washita 138kV                                    |
|         | GEN-2005-003           | 31.0    | WFEC | Washita 138kV                                    |
|         | GEN-2006-002           | 101.0   | AEPW | Grapevine - Elk City 230kV                       |
|         | GEN-2006-035           | 225.0   | AEPW | Grapevine - Elk City 230kV                       |
| Dulau   | GEN-2006-043           | 99.0    | AEPW | Grapevine - Elk City 230kV                       |
| Prior   | GEN-2007-032           | 150.0   | WFEC | Tap Clinton Junction – Clinton 138kV             |
| Queueu  | GEN-2007-043           | 200.0   | OKGE | Tap Lawton Eastside – Cimarron 345kV             |
|         | GEN-2007-052           | 150.0   | WFEC | Anadarko 138kV                                   |
|         | GEN-2008-023           | 150.0   | AEPW | Hobart Junction 138kV                            |
|         | GEN-2008-037           | 100.8   | WFEC | Tap Washita – Blue Canyon 138kV                  |
|         | GEN-2009-016           | 140.0   | AEPW | Falcon Road 138kV                                |
|         | GEN-2009-030           | 100.8   | WFEC | Weatherford 138kV                                |
|         | GEN-2009-060           | 84.0    | WFEC | Gotebo 69kV                                      |
|         | GEN-2010-040           | 300.0   | OKGE | Cimarron 345kV                                   |
|         | GEN-2011-007           | 250.0   | OKGE | Tap Cimarron - Woodring 345kV (Matthewson 345kV) |
|         | GEN-2011-009           | 150.4   | AEPW | Hobart 138kV                                     |
|         | GEN-2011-010           | 100.8   | OKGE | Minco 345kV                                      |
|         | PRIOR QUEUED SUBTOTAL  | 2,895.8 |      |                                                  |
| Group   | 7 SW OKLAHOMA SUBTOTAL | 0.0     |      |                                                  |
|         | AREA TOTAL             | 2,895.8 |      |                                                  |

| Cluster | Request                   | Amount  | Area | Proposed Point of Interconnection |
|---------|---------------------------|---------|------|-----------------------------------|
|         | Wolf Creek                | 1,170.0 | WERE | Wolf Creek 345kV                  |
|         | ASGI-2010-006             | 150.0   | AECI | Tap Fairfax – Fairfax Tap 138kV   |
|         | ASGI-2010-007             | 150.0   | AECI | Tap Fairfax – Fairfax Tap 138kV   |
|         | GEN-2002-004              | 200.0   | WERE | Latham 345kV                      |
|         | GEN-2005-013              | 201.0   | WERE | Tap Latham - Neosho               |
|         | GEN-2007-025              | 300.0   | WERE | Tap Woodring – Wichita 345kV      |
| Dulan   | GEN-2008-013              | 300.0   | OKGE | Tap Woodring – Wichita 345kV      |
| Prior   | GEN-2008-021              | 42.0    | WERE | Wolf Creek 25kV                   |
| Queueu  | GEN-2008-071              | 76.8    | OKGE | Newkirk 138kV                     |
|         | GEN-2008-098              | 100.8   | WERE | Tap Wolf Creek – LaCygne 345kV    |
|         | GEN-2008-127              | 200.1   | WERE | Tap Sooner – Rose Hill 345kV      |
|         | GEN-2009-025              | 60.0    | OKGE | Tap Deer Creek – Sinclair 69kV    |
|         | GEN-2010-003              | 100.8   | WERE | GEN-2008-098 345kV                |
|         | GEN-2010-005              | 300.0   | WERE | GEN-2007-025 345kV                |
|         | GEN-2010-055              | 4.5     | AEPW | Wekiwa 138kV                      |
|         | PRIOR QUEUED SUBTOTAL     |         |      |                                   |
| Gi      | roup 8 N-OK/S-KS SUBTOTAL | 0.0     |      |                                   |
|         | AREA TOTAL                | 3,356.0 |      |                                   |

| Cluster               | Request           | Amount  | Area | Proposed Point of Interconnection          |
|-----------------------|-------------------|---------|------|--------------------------------------------|
|                       | Genoa             | 4.0     | NPPD | Genoa 115kV                                |
|                       | Ainsworth         | 75.0    | NPPD | Ainsworth Wind Tap 115kV                   |
|                       | Rosebud Project   | 30.0    | NPPD | St. Francis 115kV                          |
|                       | Broken Bow        | 8.3     | NPPD | Genoa 115kV                                |
|                       | Ord               | 10.8    | NPPD | Bloomfield 115kV                           |
|                       | Stuart            | 2.1     | NPPD | Petersburg 115kV                           |
|                       | GEN-2006-020N     | 42.0    | NPPD | Bloomfield 115kV                           |
| Dulau                 | GEN-2006-037N1    | 75.0    | NPPD | Broken Bow 115kV                           |
| Oucued                | GEN-2006-038N005  | 80.0    | NPPD | Broken Bow 115kV                           |
| Queueu                | GEN-2006-038N019  | 80.0    | NPPD | Petersburg 115kV                           |
|                       | GEN-2006-044N     | 40.5    | NPPD | Tap Neligh – Petersburg 115kV              |
|                       | GEN-2006-044N02   | 100.5   | NPPD | GEN-2008-086N02 230kV                      |
|                       | GEN-2007-011N08   | 81.0    | NPPD | Bloomfield 115kV                           |
|                       | GEN-2008-086N02   | 200.0   | NPPD | Tap Ft. Randall – Columbus 230kV           |
|                       | GEN-2010-010      | 100.5   | NPPD | Madison County 230kV                       |
|                       | GEN-2010-051      | 200.0   | NPPD | Tap Twin Church – Hoskins 230kV            |
|                       | GEN-2011-027      | 120.0   | NPPD | Tap Twin Church - Hoskins 230kV            |
| PRIOR QUEUED SUBTOTAL |                   | 1,249.7 |      |                                            |
| Cluster               | Request           | Amount  | Area | Proposed Point of Interconnection          |
| N Nebraska            | GEN-2010-044      | 99.0    | NPPD | Harbine 115kV/Tap Harbine – Beatrice 115kV |
| Group 9/10 N          | NEBRASKA SUBTOTAL | 99.0    |      |                                            |
| A                     | REA TOTAL         | 1,348.7 |      |                                            |

| Cluster      | Request            | Amount  | Area | Proposed Point of Interconnection   |
|--------------|--------------------|---------|------|-------------------------------------|
|              | GEN-2003-006A      | 200.0   | MKEC | Elm Creek 230kV                     |
|              | GEN-2003-019       | 250.0   | MIDW | Smoky Hills Tap 230kV               |
|              | GEN-2006-031       | 75.0    | MIDW | Knoll 115kV                         |
|              | GEN-2006-032       | 200.0   | MIDW | South Hays 230kV                    |
| Prior        | GEN-2008-092       | 201.0   | MIDW | Knoll 115kV                         |
| Queued       | GEN-2009-008       | 199.5   | SUNC | South Hays 230kV                    |
|              | GEN-2009-011       | 50.0    | MKEC | Tap Plainville – Phillipsburg 115kV |
|              | GEN-2009-020       | 48.6    | MIDW | Tap Bazine – Nekoma 69kV            |
|              | GEN-2010-048       | 70.0    | MIDW | Tap Beach Station – Redline 115kV   |
|              | GEN-2010-057       | 201.0   | MIDW | Rice County 230kV                   |
| PRIOR Q      | JEUED SUBTOTAL     | 1,495.1 |      |                                     |
| Cluster      | Request            | Amount  | Area | Proposed Point of Interconnection   |
| North Kansas | GEN-2011-001       | 200.0   | SUNC | Tap Post Rock – Axtell 345kV        |
| Group 11 NOR | TH KANSAS SUBTOTAL | 200.0   |      |                                     |

Southwest Power Pool, Inc.

AREA TOTAL 1,695.1

| Cluster | Request                 | Amount | Area | Proposed Point of Interconnection |
|---------|-------------------------|--------|------|-----------------------------------|
|         | PRIOR QUEUED SUBTOTAL   | 0.0    |      |                                   |
|         | Group 12 NW AR SUBTOTAL | 0.0    |      |                                   |
|         | AREA TOTAL              | 0.0    |      |                                   |
|         | AREA IUIAL              | 0.0    |      |                                   |

| Cluster       | Request                 | Amount  | Area | Proposed Point of Interconnection                    |
|---------------|-------------------------|---------|------|------------------------------------------------------|
|               | ASGI-2010-001           | 400.0   | AECI | Tap Cooper – Fairport 345kV                          |
|               | ASGI-2010-002           | 201.0   | AECI | Lathrop 161kV                                        |
|               | ASGI-2010-003           | 300.0   | AECI | Maryville 161kV                                      |
|               | ASGI-2010-004           | 50.0    | AECI | Tap Queen City – Lancaster 69kV                      |
|               | ASGI-2010-005           | 99.0    | AECI | Lathrop 161kV                                        |
|               | ASGI-2010-008           | 100.0   | AECI | Maryville 161kV                                      |
|               | ASGI-2010-009           | 201.0   | AECI | Osborn 161kV                                         |
|               | GEN-2006-014            | 300.0   | MIPU | Tap Maryville – Clarinda 161kV & Tie to Midway 161kV |
|               | GEN-2006-017            | 300.0   | MIPU | Tap Maryville – Clarinda 161kV & Tie to Midway 161kV |
| Drien         | GEN-2007-015            | 135.0   | WERE | Tap Humboldt – Kelly 161kV                           |
| Oueued        | GEN-2007-017            | 100.5   | MIPU | Tap Maryville – Clarinda 161kV & Tie to Midway 161kV |
| Queueu        | GEN-2007-053            | 110.0   | MIPU | Tap Maryville – Clarinda 161kV & Tie to Midway 161kV |
|               | GEN-2008-1190           | 60.0    | OPPD | Tap Humboldt – Kelly 161kV                           |
|               | GEN-2008-129            | 80.0    | MIPU | Pleasant Hill 161kV                                  |
|               | GEN-2009-040            | 73.8    | WERE | Tap Smittyville – Knob Hill 115kV                    |
|               | GEN-2010-036            | 4.6     | WERE | 6 <sup>th</sup> Street 115kV                         |
|               | GEN-2010-041            | 10.5    | OPPD | S 1399 161kV                                         |
|               | GEN-2010-047            | 72.0    | NPPD | Tap Beatrice – Harbine 115kV                         |
|               | GEN-2010-056            | 151.0   | MIPU | Tap Saint Joseph - Cooper 345kV                      |
|               | GEN-2011-011            | 50.0    | KCPL | latan 345kV                                          |
|               | GEN-2011-018            | 73.6    | NPPD | Steele City 115kV                                    |
|               | PRIOR QUEUED SUBTOTAL   | 2,872.0 |      |                                                      |
| Group 13 NORT | HWEST MISSOURI SUBTOTAL | 0.0     |      |                                                      |
|               | AREA TOTAL              | 2,872.0 |      |                                                      |

| Cluster                          | Request      | Amount  | Area | Proposed Point of Interconnection |
|----------------------------------|--------------|---------|------|-----------------------------------|
| Duinu                            | GEN-2006-038 | 750.0   | WFEC | Hugo 345kV                        |
| Prior                            | GEN-2008-046 | 200.0   | OKGE | Sunnyside 345kV                   |
| Queuea                           | GEN-2011-013 | 101.7   | OKGE | Sunnyside 345kV                   |
| PRIOR QUEUED SUBTOTAL            |              | 1,051.7 |      |                                   |
| Group 14 SOUTH OKLAHOMA SUBTOTAL |              | 0.0     |      |                                   |
| AREA TOTAL                       |              | 1,051.7 |      |                                   |

| Cluster      | Request                 | Amount | Area | Proposed Point of Interconnection |
|--------------|-------------------------|--------|------|-----------------------------------|
| Prior Queued | GEN-2008-123N           | 89.7   | NPPD | Tap Guide – Pauline 115kV         |
|              | PRIOR QUEUED SUBTOTAL   | 89.7   |      |                                   |
|              | Group 15 SOUTH NEBRASKA | 0.0    |      |                                   |
|              | AREA TOTAL              | 89.7   |      |                                   |

| CLUSTER TOTAL (CURRENT STUDY)          | 479MW      |
|----------------------------------------|------------|
| CLUSTER TOTAL (INCLUDING PRIOR QUEUED) | 33,702.1MW |

#### **D: Proposed Point of Interconnection One line Diagrams**

#### GEN-2010-044 (Option A)



#### GEN-2010-061



#### <u>E: Cost Allocation per Interconnection Request (Including Prior</u> <u>Queued Upgrades)</u>

\*Important Note:

#### \*\*WITHDRAWAL OF HIGHER QUEUED PROJECTS WILL CAUSE A RESTUDY AND MAY RESULT IN HIGHER INTERCONNECTION COSTS\*\*

This section shows each Generation Interconnection Request Customer, their current study impacted Network Upgrades, and the previously allocated upgrades upon which they rely to accommodate their interconnection to the transmission system.

The costs associated with the current study Network Upgrades are allocated to the Customers shown in this report.

In addition should a higher queued request, defined as one this study includes as a prior queued request, withdraw, the Network Upgrades assigned to the withdrawn request may be reallocated to the remaining requests that have an impact on the Network Upgrade under a restudy. Also, should a Interconnection Request choose to go into service prior to the operation date of any necessary Network Upgrades, the costs associated with those upgrades may be reallocated to the impacted Interconnection Request. The actual costs allocated to each Generation Interconnection Request Customer will be determined at the time of a restudy.

The required interconnection costs listed do not include all costs associated with the deliverability of the energy to final customers. These costs are determined by separate studies if the Customer submits a Transmission Service Request through SPP's Open Access Same Time Information System (OASIS) as required by Attachment Z1 of the SPP OATT. In addition, costs associated with a short circuit analysis will be allocated should the Interconnection Request Customer choose to execute a Facility Study Agreement.

# E. Cost Allocation Per Request

(Including Perviously Allocated Network Upgrades\*)

| Interconnection Request and Upgrades                                                                                             | Upgrade Type            | Allocated Cost  | Upgrade Cost     |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|------------------|
| GEN 2010-044                                                                                                                     |                         |                 |                  |
| Beatrice - Clatonia 115kV line<br>Rebuild approximately 9 miles of 115kV line                                                    | Current<br>Study        | \$5,250,000.00  | \$5,250,000.00   |
| GEN 2010-044 Interconnection Costs<br>See Oneline Diagram.                                                                       | Current<br>Study        | \$4,000,000.00  | \$4,000,000.00   |
| GEN 2010-047 - Harbine 115kV<br>Rebuild approximately 6 miles of 115kV from Harbine - GEN 2010-047 Tap                           | Previously<br>Allocated |                 | \$3,500,000.00   |
|                                                                                                                                  | Current Study Total     | \$9,250,000.00  |                  |
| GEN 2010-061                                                                                                                     |                         |                 |                  |
| GEN 2010-061 Interconnection Costs<br>See Oneline Diagram.                                                                       | Current<br>Study        | \$9,000,000.00  | \$9,000,000.00   |
| Knoll - North Hays 115kV<br>NRIS upgrade: Rebuild approximately 2 miles of 115kV line                                            | Current<br>Study        | \$1,500,000.00  | \$1,500,000.00   |
| North Hays - Vine Street 115kV<br>NRIS upgrade: Rebuild approximately 4 miles of 115kV line                                      | Current<br>Study        | \$3,000,000.00  | \$3,000,000.00   |
| Smoky Hill - Summit 230kV<br>NRIS upgrade: Rebuild approximately 40 miles of 230kV line                                          | Current<br>Study        | \$14,519,815.75 | \$23,700,000.00  |
| South Hays 230/115/12.5kV transformer CKT 2<br>NRIS upgrade: Install 2nd 230/115/12.5kV transformer at South Hays                | Current<br>Study        | \$3,000,000.00  | \$3,000,000.00   |
| Beaver County - Gray County 345kV<br>Build approximately 90 miles of 345kV from Beaver County - Gray County                      | Previously<br>Allocated |                 | \$90,000,000.00  |
| Border - Tuco Interchange 345KV CKT 1<br>Balanced Portfolio: Tuco - Woodward 345kV (Total Project E&C Cost Shown)                | Previously<br>Allocated |                 | \$148,727,500.00 |
| Matthewson - Cimarron 345kV CKT 2<br>Build second 345kV circuit from Matthewson - Cimarron                                       | Previously<br>Allocated |                 | \$15,000,000.00  |
| Medicine Lodge - Wichita 345KV Dbl CKT<br>Priority Project: Spearville - Comanche - Med Lodge - Wichita Dbl 345kV CKT (Total Pro | Previously<br>Allocated |                 | \$356,300,000.00 |
| Medicine Lodge - Woodward 345KV Dbl CKT<br>Priority Project: Med Lodge - Woodward Dbl 345kV CKT (Total Project E&C Cost Shown    | Previously<br>Allocated |                 | \$194,972,759.00 |
| Medicine Lodge 345/115kV transformer<br>Install new 345/115kV transformer at Medicine Lodge                                      | Previously<br>Allocated |                 | \$10,000,000.00  |



| Interconnection Request and Upgrades                                                                                                                   | Upgrade Type                   | Allocated Cost  | Upgrade Cost     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|------------------|
| Mullegreen - Circle 345kV Dbl CKT<br>Build new 345kV line from Mullergreen - Circle                                                                    | Previously<br>Allocated        |                 | \$132,000,000.00 |
| Post Rock 345/230/13.8KV Autotransformer CKT 1<br>Balanced Portfolio: Spearville - PostRock - Axtell 345kV CKT (Total Project E&C Cost Sho             | Previously<br>Allocated        |                 | \$112,700,000.00 |
| Post Rock 345/230/13.8kV Autotransformer CKT 2<br>DISIS-2010-001 Restudy                                                                               | Previously<br>Allocated        |                 | \$13,749,527.00  |
| PostRock - GEN-2010-016 Tap 345KV CKT 1<br>Balanced Portfolio: Spearville - PostRock - Axtell 345kV CKT (Total Project E&C Cost Sho                    | Previously<br>Allocated        |                 | \$112,700,000.00 |
| Spearville - Mullergreen 345kV Dbl CKT<br>Build new 345kV line from Spearville - Mullergreen                                                           | Previously<br>Allocated        |                 | \$124,000,000.00 |
| Tatonga - Matthewson 345kV CKT 2<br>Build second 345kV circuit from Tatonga - Matthewson                                                               | Previously<br>Allocated        |                 | \$60,000,000.00  |
| Tuco Interchange 345/230/13.2KV Autotransformer CKT 2<br>Balanced Portfolio: Tuco 345/230 kV Transformer CKT 2 (Total Project E&C Cost Shown)          | Previously<br>Allocated        |                 | \$11,250,000.00  |
| c                                                                                                                                                      | Current Study Total            | \$31,019,815.75 |                  |
| GEN 2011-001                                                                                                                                           |                                |                 |                  |
| GEN 2011-001 Interconnection Costs<br>See Oneline Diagram.                                                                                             | Current<br>Study               | \$4,500,000.00  | \$9,000,000.00   |
| Smoky Hill - Summit 230kV<br>NRIS upgrade: Rebuild approximately 40 miles of 230kV line                                                                | Current<br>Study               | \$9,180,184.25  | \$23,700,000.00  |
| Beaver - Woodward 345kV DbI CKT<br>Priority Project: Hitchland - Woodward DbI 345kV CKT (Total Project E&C Cost Shown)                                 | Previously<br>Allocated        |                 | \$247,005,793.00 |
| Medicine Lodge - Wichita 345KV Dbl CKT<br>Priority Project: Spearville - Comanche - Med Lodge - Wichita Dbl 345kV CKT (Total Proje<br>F&C Cost Shown ) | Previously<br>Allocated        |                 | \$356,300,000.00 |
| Post Rock 345/230/13.8KV Autotransformer CKT 1<br>Balanced Portfolio: Spearville - PostRock - Axtell 345kV CKT (Total Project E&C Cost Sho             | Previously<br>Allocated        |                 | \$112,700,000.00 |
| Post Rock 345/230/13.8kV Autotransformer CKT 2<br>DISIS-2010-001 Restudy                                                                               | Previously<br>Allocated        |                 | \$13,749,527.00  |
| PostRock - GEN-2010-016 Tap 345KV CKT 1<br>Balanced Portfolio: Spearville - PostRock - Axtell 345kV CKT (Total Project E&C Cost Sho                    | Previously<br>Allocated<br>wn) |                 | \$112,700,000.00 |
| South Hays - Hays Plant - Vine Street 115kV CKT 1<br>Rebuild approximately 4 miles of 115kV.                                                           | Previously<br>Allocated        |                 | \$3,000,000.00   |



| Interconnection Request and Upgrades                                                     | Upgrade Type        | Allocated Cost  | Upgrade Cost     |
|------------------------------------------------------------------------------------------|---------------------|-----------------|------------------|
| Spearville - GEN-2010-016 Tap 345KV CKT 1                                                | Previously          |                 | \$112,700,000.00 |
| Balanced Portfolio: Spearville - PostRock - Axtell 345kV CKT (Total Project E&C Cost Sho | Allocated           |                 |                  |
|                                                                                          | Current Study Total | \$18,180,184.25 |                  |
| TOTAL CURRENT STUDY                                                                      | COSTS:              | \$58,450,000.00 |                  |



#### F: Cost Allocation per Proposed Study Network Upgrade

\*Important Note:

#### \*\*WITHDRAWAL OF HIGHER QUEUED PROJECTS WILL CAUSE A RESTUDY AND MAY RESULT IN HIGHER INTERCONNECTION COSTS\*\*

This section shows each Direct Assigned Facility and Network Upgrade and the Generation Interconnection Request Customer(s) which have an impact in this study assuming all higher queued projects remain in the queue and achieve commercial operation.

The required interconnection costs listed do not include all costs associated with the deliverability of the energy to final customers. These costs are determined by separate studies if the Customer submits a Transmission Service Request through SPP's Open Access Same Time Information System (OASIS) as required by Attachment Z1 of the SPP OATT. In addition, costs associated with a short circuit analysis will be allocated should the Interconnection Request Customer choose to execute a Facility Study Agreement.

There may be additional costs allocated to each Customer. See Appendix E for more details.

# Appendix F. Cost Allocation by Upgrade

| Beatrice - Clatonia 115kV line                |                                       | \$5,250,000.00  |
|-----------------------------------------------|---------------------------------------|-----------------|
| Rebuild approximately 9 miles of 115kV line   |                                       |                 |
|                                               | GEN 2010-044 \$5,250,000.00           |                 |
|                                               | Total Allocated Costs \$5,250,000.00  |                 |
| GEN 2010-044 Interconnection Costs            |                                       | \$4,000,000.00  |
| See Oneline Diagram.                          |                                       |                 |
|                                               | GEN 2010-044 \$4,000,000.00           |                 |
|                                               | Total Allocated Costs \$4,000,000.00  |                 |
| GEN 2010-061 Interconnection Costs            |                                       | \$9,000,000.00  |
| See Oneline Diagram.                          |                                       |                 |
|                                               | GEN 2010-061 \$9,000,000.00           |                 |
|                                               | Total Allocated Costs \$9,000,000.00  |                 |
| GEN 2011-001 Interconnection Costs            |                                       | \$9,000,000.00  |
| See Oneline Diagram.                          |                                       |                 |
|                                               | GEN 2011-001 \$4,500,000.00           |                 |
|                                               | Total Allocated Costs \$18,000,000.00 |                 |
| Knoll - North Hays 115kV                      |                                       | \$1,500,000.00  |
| NRIS upgrade: Rebuild approximately 2 miles   | of 115kV line                         |                 |
|                                               | GEN 2010-061 \$1,500,000.00           |                 |
|                                               | Total Allocated Costs \$1,500,000.00  |                 |
| North Hays - Vine Street 115kV                |                                       | \$3,000,000.00  |
| NRIS upgrade: Rebuild approximately 4 miles   | of 115kV line                         |                 |
|                                               | GEN 2010-061 \$3,000,000.00           |                 |
|                                               | Total Allocated Costs \$3,000,000.00  |                 |
| Smoky Hill - Summit 230kV                     |                                       | \$23,700,000.00 |
| NRIS upgrade: Rebuild approximately 40 mile   | s of 230kV line                       |                 |
|                                               | GEN 2010-061 \$14,519,815.75          |                 |
|                                               | GEN 2011-001 \$9,180,184.25           |                 |
|                                               | Total Allocated Costs \$23,700,000.00 |                 |
| South Hays 230/115/12.5kV transforme          | er CKT 2                              | \$3,000,000.00  |
| NRIS upgrade: Install 2nd 230/115/12.5kV tran | nsformer at South Hays                |                 |
|                                               | GEN 2010-061 \$3,000,000.00           |                 |




# **<u>G: Power flow Analysis (Constraints 20% TDF and above)</u>**

| SOLUTIONTYPE | GROUP       | SCENARIO | SEASON | SOURCE  | DIRECTION  | MONTCOMMONNAME                                  | RATEB | TDF     | TC%LOADING | CONTNAME                  |                        |
|--------------|-------------|----------|--------|---------|------------|-------------------------------------------------|-------|---------|------------|---------------------------|------------------------|
| FDNS         | 00G10_044NR |          | 0 16WP | G10_044 | 'FROM->TO' | 'BEATRICE POWER STATION - CLATONIA 115KV CKT 1' | 137   | 0.21064 | 105.6526   | 5 'BEATRICE POWER STATION | - SHELDON 115KV CKT 1' |

#### H: Power flow Analysis (Constraints Between 3% and 20% TDF)

| SOLUTIONTYPE                              | GROUP      | SCENARIO                  | SEASON   | SOURCE  | DIRECTION            | MONTCOMMONNAME                            | RATEB | TDF     | TC%LOADIN(CONTNAME                                       |
|-------------------------------------------|------------|---------------------------|----------|---------|----------------------|-------------------------------------------|-------|---------|----------------------------------------------------------|
| FNSL-Iteration limit e                    | x          | 3                         | 0 11G    | G10_044 |                      | Non Converged Contingency                 |       | 0.05138 | 9999 '050 1'                                             |
| FNSL-Iteration limit ex 3 0 11G G10_044 I |            | Non Converged Contingency | 0        | 0.04793 | 9999 '050 <b>2</b> ' |                                           |       |         |                                                          |
| FNSL-Iteration limit e                    | x          | 3                         | 0 11G    | G10_044 |                      | Non Converged Contingency                 | 0     | 0.04957 | 9999 'ATC_B2_8E2'                                        |
| FNSL-Iteration limit e                    | x          | 3                         | 0 11G    | G10_044 |                      | Non Converged Contingency                 | 0     | 0.05354 | 9999 'ATC_B2_8E2_G'                                      |
| FDNS                                      |            | 3                         | 0 11G    | G10_061 | 'TO->FROM'           | 'KNOLL - N HAYS3 115.00 115KV CKT 1'      | 99    | 0.04525 | 112.2759 'KNOLL 230 - POSTROCK6 230.00 230KV CKT 1'      |
| FDNS                                      |            | 3                         | 0 11G    | G10_061 | 'TO->FROM'           | 'N HAYS3 115.00 - VINE STREET 115KV CKT 1 | 99    | 0.04525 | 118.7945 'KNOLL 230 - POSTROCK6 230.00 230KV CKT 1'      |
| FDNS                                      |            | 3                         | 0 11G    | G10 061 | 'TO->FROM'           | 'MULLERGREN - SPEARVILLE 230KV CKT 1'     | 355.3 | 0.07794 | 106.8894 'G10-16T 345.00 - POSTROCK7 345.00 345KV CKT 1' |
| FDNS                                      |            | 3                         | 0 11G    | G10 061 | 'FROM->TO'           | WICHITA (WICHT12X) 345/138/13.8KV TRANS   | 440   | 0.03898 | 111.607 'BENTON - WICHITA 345KV CKT 1'                   |
| FDNS                                      |            | 3                         | 0 11G    | G10 061 | 'FROM->TO'           | WICHITA (WICHT12X) 345/138/13.8KV TRANS   | 440   | 0.03898 | 111.277 'BENTON - WICHITA 345KV CKT 1'                   |
| FDNS                                      |            | 3                         | 0 11G    | G11 001 | 'TO->FROM'           | 'KNOLL - N HAYS3 115.00 115KV CKT 1'      | 99    | 0.04831 | 112.2759 'KNOLL 230 - POSTROCK6 230.00 230KV CKT 1'      |
| FDNS                                      |            | 3                         | 0 11G    | G11 001 | 'TO->FROM'           | 'N HAYS3 115.00 - VINE STREET 115KV CKT 1 | 99    | 0.04831 | 118.7945 'KNOLL 230 - POSTROCK6 230.00 230KV CKT 1'      |
| FNSL-Iteration limit e                    | x          | 3                         | 0 11G    | G11 001 |                      | Non Converged Contingency                 | 0     | 0.03964 | 9999 '050 1'                                             |
| FNSL-Iteration limit e                    | x          | 3                         | 0 11G    | G11 001 |                      | Non Converged Contingency                 | 0     | 0.03721 | 9999 '050 2'                                             |
| FNSL-Iteration limit e                    | x          | 3                         | 0 11G    | G11 001 |                      | Non Converged Contingency                 | 0     | 0.03824 | 9999 'ATC B2 8E2'                                        |
| FNSL-Iteration limit e                    | x          | 3                         | 0 11G    | G11 001 |                      | Non Converged Contingency                 | 0     | 0.04105 | 9999 'ATC B2 8E2 G'                                      |
| FNSL-Iteration limit e                    | x          | 11                        | 0 11G    | G10 044 |                      | Non Converged Contingency                 | 2598  | 0.03468 | 19.7803 'LAKEOVER - MCADAMS 500KV CKT 1'                 |
| FNSL-Iteration limit e                    | x          | 11                        | 0 11G    | G10 044 |                      | Non Converged Contingency                 | 0     | 0.05073 | 9999 '050 1'                                             |
| FNSL-Iteration limit e                    | x          | 11                        | 0 11G    | G10 044 |                      | Non Converged Contingency                 | 0     | 0.04733 | 9999 '050 2'                                             |
| ENSI -Iteration limit e                   | x          | 11                        | 0 116    | G10_044 |                      | Non Converged Contingency                 | 0     | 0.05286 | 9999 'ATC B2 8F2 G'                                      |
| ENSI-Iteration limit e                    | x          | 11                        | 0 116    | G11_001 |                      | Non Converged Contingency                 | 0     | 0.04393 | 9999 'TRE-STEGALL'                                       |
| ENSI -Iteration limit e                   | x          | 11                        | 0 116    | G11_001 |                      | Non Converged Contingency                 | 0     | 0.03899 | 9999 '050 1'                                             |
| ENSI-Iteration limit e                    | x          | 11                        | 0 116    | G11_001 |                      | Non Converged Contingency                 | 0     | 0.03661 | 9999 '050 2'                                             |
| ENSI-Iteration limit e                    | v.         | 11                        | 0 116    | G11_001 |                      | Non Converged Contingency                 | 0     | 0.03001 | 9999 'ATC B2 8F2 G'                                      |
| ENSL-Iteration limit e                    | x          | 13                        | 0 116    | G10_044 |                      | Non Converged Contingency                 | 0     | 0.05073 | 9999 '050 1'                                             |
| ENSI-Iteration limit e                    | v.         | 13                        | 0 116    | G10_044 |                      | Non Converged Contingency                 | 0     | 0.03073 | 9999 '050 2'                                             |
| ENSL-Iteration limit e                    | N N        | 13                        | 0 116    | G10_044 |                      | Non Converged Contingency                 | 0     | 0.04733 | 9999 000 2<br>9999 'ATC B2 852'                          |
| ENSL-Iteration limit e                    | N N        | 13                        | 0 110    | G10_044 |                      | Non Converged Contingency                 | 0     | 0.04855 | 9999 ATC_B2_8E2 G'                                       |
| FNSL-Iteration limit e                    | N N        | 13                        | 0 116    | G10_044 |                      | Non Converged Contingency                 | 0     | 0.03280 | 9999 'TRE-STEGALL'                                       |
| ENSL-Iteration limit e                    | N N        | 13                        | 0 116    | G11_001 |                      | Non Converged Contingency                 | 0     | 0.03800 | 9999 IN STEALE                                           |
| ENSL-Iteration limit e                    | N N        | 13                        | 0 110    | G11_001 |                      | Non Converged Contingency                 | 0     | 0.03655 | 9999 '050 2'                                             |
| ENSL-Iteration limit e                    | N N        | 13                        | 0 110    | G11_001 |                      | Non Converged Contingency                 | 0     | 0.03001 | 9999 000 2<br>9999 'ATC B2 852'                          |
| ENSL-Iteration limit e                    | N N        | 13                        | 0 110    | G11_001 |                      | Non Converged Contingency                 | 0     | 0.03701 | 9999 ATC_B2_8E2 G'                                       |
| ENSL Itoration limit o                    | × 00C10 0/ | 13                        | 0 110    | G11_001 |                      | Non Converged Contingency                 | 0     | 0.04030 | 0000 'ATC D2 852'                                        |
| ENSL Itoration limit o                    |            | 14                        |          | G10_044 |                      | Non Converged Contingency                 | 0     | 0.04033 | 9999 ATC_02_012                                          |
| ENSL Itoration limit o                    |            | 14                        | 0 11WP   | G10_044 |                      | Non Converged Contingency                 | 1702  | 0.03024 | 20 05440 'GEN200015 1 1SGDDEL 18 000'                    |
| ENSL Itoration limit o                    |            | 14                        | 0 11/0/P |         |                      | Non Converged Contingency                 | 1702  | 0.03450 | 20.95449 GEN300015 1-150 DEE 18.000                      |
| ENSL-Iteration limit e                    | × 00010_0  | 14                        |          |         |                      | Non Converged Contingency                 | 1755  | 0.03430 | 20.93449 GEN300010 1-1G1GFDEL 18.000                     |
| ENSL Itoration limit o                    |            | 14<br>14 NI               |          | G10_044 |                      | Non Converged Contingency                 | 1/93  | 0.03436 | 20.93449 OLN300017 1-1020FDLL 18.000                     |
| ENSL Itoration limit o                    |            | +4IN<br>14N               | 0 1650   | G10_044 |                      | Non Converged Contingency                 | 0     | 0.03131 |                                                          |
| ENSL-Iteration limit e                    | × 00C11_0  | 141N                      | 0 103F   | G10_044 |                      | Non Converged Contingency                 | 0     | 0.03103 | 9999 DANO/WAFAD2                                         |
| FNSL-Iteration limit e                    |            | )1                        |          | G11_001 |                      | Non Converged Contingency                 | 0     | 0.04045 | 9999 INF-SIEGALL                                         |
| ENSL-Iteration limit e                    | x 00G11_0  | )1                        |          | G11_001 |                      | Non Converged Contingency                 | 0     | 0.05505 | 9999 AIC_D2_0E2                                          |
| FNSL-Iteration limit e                    |            | )1<br>)1 NI               |          | G11_001 |                      | Non Converged Contingency                 | 1702  | 0.05756 | 9999 AIC_D2_622_0                                        |
| FINSL-Iteration limit e                   | x 00G11_00 |                           | 0 113P   | G11_001 |                      | Non Converged Contingency                 | 1/92  | 0.05050 | 52.25015 011-0151 545.00 - TATONGA7 545.00 545KV CKT 1   |
|                                           |            |                           | 0 105P   |         |                      |                                           | 1070  | 0.00011 |                                                          |
|                                           | 03G10_00   | D1                        | 0 11G    | G10_061 |                      |                                           | 99    | 0.04525 | 117.8355 KNULL 230 - POSTROCKO 230.00 230KV CKT 1        |
|                                           |            | ) I                       | 0 110    |         |                      |                                           | 210   | 0.04525 | 124.2402 KNOLL 230 - POSTROCKO 230.00 230KV CKT 1        |
|                                           | 03010_00   | ) <u>1</u>                | 0 110    | G10_001 |                      | SNOKYHIE 220.00 SUNANT 220KV CKT 1        | 319   | 0.10228 | 104.2442 'AVTELL C11.001T 245.00 245/V/C/T 1             |
|                                           | 02610_00   | ) L<br>51 N               | 0 110    | G10_061 |                      |                                           | 319   | 0.10228 | 104.2442 AXIELL-011_0011 345.00 345KV CKI I              |
|                                           | 03010_00   |                           | 0 110    | G10_001 |                      | KNOLL 200 - PUSINULKO 230.00 230KV CKI    | 398   | 0.00000 | 100.7272 C11 001T 245.00 POSTROCK7 345.00 345KV CKT 4    |
|                                           | 03010_00   |                           | 0 110    | G10_001 |                      |                                           | 319   | 0.00938 | 102.2700 'AVTELL C11.001T 245.00 245/0/CKT 1             |
|                                           | 03G10_00   |                           | 0 110    | G10_061 |                      | KNULL 230 - PUSTKULK6 230.00 230KV CK1    | 398   | 0.1133/ | 103.3799 AXTELL - G11_0011 345.00 345KV CKT 1            |
|                                           | 03G10_00   |                           | 0 110    | G10_061 |                      | SIVIURTHED 230.00 SUMMIT 230KV CKT 1      | 319   | 0.06938 | 100 'DRI MEDIO WI'                                       |
|                                           | 03G10_00   |                           | 0 116    | G10_061 |                      | SIVIUNTHED 230.00 - SUMIMIT 230KV CKT 1   | 319   | 0.04612 |                                                          |
| FDIN2                                     | 03010_06   | NITU                      | 0 110    | GT0_061 | IO->FKOM             | KNULL - N HAYS3 115.00 115KV CKT 1        | 99    | 0.03998 | 132.3128 KNULL 230 - PUSTKUCK6 230.00 230KV CKT 1        |

| FDNS               | 03G10_061N       | 0 11G | G10_061 | 'TO->FROM' | 'N HAYS3 115.0  | 00 - VINE STREET 115KV CKT 1 | 99    | 0.03998 | 138.9491 'KNOLL 230 - P | OSTROCK6 230.00 230KV CKT 1' |
|--------------------|------------------|-------|---------|------------|-----------------|------------------------------|-------|---------|-------------------------|------------------------------|
| FDNS               | 03G10_061N       | 0 11G | G10_061 | 'FROM->TO' | 'S HAYS6 230.00 | 00 (S HAYS T1) 230/115/12.47 | 166.7 | 0.03998 | 101.2194 'KNOLL 230 - P | OSTROCK6 230.00 230KV CKT 1' |
| FDNS               | 03G10_061N       | 0 11G | G10_061 | 'FROM->TO' | 'S HAYS6 230.00 | 00 (S HAYS T1) 230/115/12.47 | 166.7 | 0.03998 | 100.9208 'KNOLL 230 - P | OSTROCK6 230.00 230KV CKT 1' |
| FNSL-Iteration lim | it ex 11G11_001  | 0 11G | G11_001 |            | Non Converged C | Contingency                  | 0     | 0.04393 | 9999 'TRF-STEGALL'      |                              |
| FNSL-Iteration lim | nit ex 11G11_001 | 0 11G | G11_001 |            | Non Converged C | Contingency                  | 0     | 0.039   | 9999 '050 1'            |                              |
| FNSL-Iteration lim | it ex 11G11_001  | 0 11G | G11_001 |            | Non Converged C | Contingency                  | 0     | 0.03661 | 9999 '050 2'            |                              |
| FNSL-Iteration lim | nit ex 11G11_001 | 0 11G | G11_001 |            | Non Converged C | Contingency                  | 0     | 0.04037 | 9999 'ATC_B2_8E2_       | G'                           |
| FDNS               | 11G11_001N       | 0 11G | G11_001 | 'FROM->TO' | 'SMOKYHL6 230   | 0.00 - SUMMIT 230KV CKT 1'   | 319   | 0.16802 | 100.067 'AXTELL - G11_  | 001T 345.00 345KV CKT 1'     |
| FNSL-Iteration lim | nit ex 13G10_044 | 0 11G | G10_044 |            | Non Converged C | Contingency                  | 0     | 0.05073 | 9999 '050 1'            |                              |
| FNSL-Iteration lim | nit ex 13G10_044 | 0 11G | G10_044 |            | Non Converged C | Contingency                  | 0     | 0.04733 | 9999 '050 2'            |                              |
| FNSL-Iteration lim | nit ex 13G10_044 | 0 11G | G10_044 |            | Non Converged C | Contingency                  | 0     | 0.04895 | 9999 'ATC_B2_8E2'       |                              |
| FNSL-Iteration lim | nit ex 13G10_044 | 0 11G | G10_044 |            | Non Converged C | Contingency                  | 0     | 0.05286 | 9999 'ATC_B2_8E2_       | G'                           |

#### I: Stability Study for Group 1

- No requests were located in the cluster group

#### J: Stability Study for Group 2

- No requests were located in the cluster group

# K: Stability Study for Group 3

- See report below

# **Final Report**

# For

# **Southwest Power Pool**

# From

# **S&C Electric Company**

# PRELIMINARY INTERCONNECTION IMPACT STUDY PISIS-2011-001 (Group 3)

S&C Project No. 5652

August 30, 2011



# **S&C Electric Company**

©2011 S&C Electric Company. All rights reserved. Permission is granted to Southwest Power Pool to copy this document or excerpt there from as required to facilitate the work related to the subject project.

S&C Electric Company, Chicago, IL 60626-3997, Phone: (773) 338-1000

POWER SYSTEMS SERVICES DIVISION FAX: (773) 338-4254

#### **TABLE OF CONTENTS**

| Exe | ecutive Summary               | 5                                                  |
|-----|-------------------------------|----------------------------------------------------|
| 1.  | Introduction                  |                                                    |
| 2   | Transmission System and       | I Study Area6                                      |
| 3.  | Power Flow Base Cases         | 7                                                  |
| 4   | Power Flow Model              | 7                                                  |
|     | 4.1                           | Siemens SWT 2.3 MW / 60 Hz Wind Turbine Generator7 |
| 5.  | Power Factor Requiremer       | its at the Point of Interconnection7               |
|     | 5.1                           | Facility Outage Contingencies9                     |
| 6.  | Transient Stability Analys    | is11                                               |
|     | 6.1                           | Stability Criteria19                               |
|     | 6.2                           | Transient Stability Results19                      |
| 7.  | <b>Conclusions and Recomn</b> | nendations                                         |

#### **Report Revision History:**

| Date of Report  | lssue  | Comments                                             |
|-----------------|--------|------------------------------------------------------|
| August, 29 2011 | Rev. A | Preliminary report issued for<br>review and approval |
| August, 30 2011 | Rev. 0 | Final report issued                                  |

| Reviewed by:                              |
|-------------------------------------------|
|                                           |
| George S. Tsai Li                         |
| Senior Engineer                           |
| S&C Electric Company                      |
| Approved by:                              |
|                                           |
|                                           |
| Terrance A. Bellei                        |
| Power Systems Services Technical Director |
| S&C Electric Company                      |
|                                           |



# **Executive Summary**

S&C Electric Company has performed an interconnection impact study for the Definitive Impact Study PISIS-2011-001 (Group 3) in response to a request through the Southwest Power Pool (SPP) Tariff studies. The interconnection request for Group 3 consists of GEN-2010-061.

The interconnection request project and prior queued projects were studied at 100% output power using 2010/2011 summer and winter peak loading cases provided by SPP.

SPP requires that the interconnection request project meet a voltage schedule at the point of interconnection (POI) consistent with the voltage in the SPP base case or nominal voltage, whichever is higher. The base case voltage at the POI location was lower than nominal and power flow results indicated that the power factor required at the POI for the majority of N-1 outage contingencies in the summer and winter cases exceed 95% lagging (capacitive). Per FERC 661-A, it is sufficient for Group 3 to deliver  $\pm 95\%$  power factor at the POI for each of the outage contingencies specified by SPP.

The interconnection request project and prior queued project are able to ride through the fault contingencies specified by SPP and that nearby areas would retain angular, frequency and voltage stability in each case. But the prior queued project; GEN-2011-016, Siemens 2.3MW at Spearville 345kV (531469), was tripping off in winter peak due at contingencies 28 and 30. The problem is solved by adjusting the transformer tap at the collector bus and the project is able to ride through the fault contingencies. Reactive power capability beyond the +/-95% power factor range is not necessary for low voltage ride through or for transient stability of Group 3. The interconnection request project in Group 3 can successfully interconnect into the transmission system at the desired location without reduction in output power.



#### 1. Introduction

S&C Electric Company has performed an interconnection impact study for the preliminary Impact Study PISIS-2011-001 (Group 3) in response to a request through the Southwest Power Pool (SPP) Tariff studies. The interconnection request project in Group 3 is listed in Table 1.1.

#### Table 1.1: Study Project in Group 3

| Project      | Size<br>(MW) | Wind Turbine Model | Point of Interconnection                 |
|--------------|--------------|--------------------|------------------------------------------|
| GEN-2010-061 | 179.4        | Siemens 2.3MW      | Tap on Spearville – Post Rock 345kV line |
|              |              |                    |                                          |

Group 3 and prior queued projects were studied at 100% output power using 2010/2011 summer and winter peak loading cases provided by SPP.

#### 2 Transmission System and Study Area

The wind generation project in Group 3, were monitored in the following areas:

AEP West (AEPW)

Oklahoma Gas and Electric (OKGE)

Western Farmers Electric Cooperative (WFEC)

Southwestern Public Service (SPS)

Midwest Energy, Inc. (MIDW)

Westar Energy, Inc (WERE)

Nebraska Public Power District (NPPD)

Omaha Public Power District (OPPD)

Lincoln Electric System (LES)

Western Area Power Administration (WAPA)

Sunflower Electric Power Corporation (SUNC)



# 3. Power Flow Base Cases

The following power flow base cases were provided by SPP:

**MDWG\_2010\_2011SP\_PISIS-2011-001-G3.sav** – Summer peak 2010/2011, which includes aggregate representation of wind turbine generator for Preliminary Impact Study PISIS-2011-001 (Group 3) and prior queued projects at 100% output power. Other study Groups were also included in the base case with wind farms dispatched at 20% of rated output power.

**MDWG\_2010\_2011WP\_PISIS-2011-001-G3.sav**— Winter peak 2010/2011, which includes aggregate representation of generation interconnect projects for Preliminary Impact Study PISIS-2011-001 (Group 3) and prior queued projects at 100% output power. Other study Groups were also included in the base case with wind farms dispatched at 20% of rated output power.

# 4 Power Flow Model

Preliminary Impact Study PISIS-2011-001 (Group 3) and prior queued projects were modeled as aggregates of wind turbine generators. The aggregate models were part of the base case supplied by SPP. Single-line diagrams and other information corresponding to the Group 1 project can be found in Appendix A.

# 4.1 Siemens SWT 2.3 MW / 60 Hz Wind Turbine Generator

The SWT WTG consists of a rotor, gearbox, induction generator, machine bridge, DC link, and network bridge. The machine bridge and network bridge decouple the generator from the power system and allows the WTG to operate at a definite power factor setpoint. The power factor range of operation in steady-state and dynamically is variable and is a function of the voltage at the generator terminals and the active power output of the generator. At rated output power and at nominal terminal voltage, the output power factor range varies from 90% leading (inductive) to 90% lagging (capacitive) power factor. The lagging power factor range is reduced if the terminal voltage is higher than nominal. The leading power factor range is greater than nominal.

# 5. Power Factor Requirements at the Point of Interconnection

SPP has specific voltage requirements for interconnecting wind farm requests. Such projects are required to meet a voltage schedule at the POI consistent with the voltage in the SPP base case or nominal voltage, whichever is higher, for transmission facility outage contingencies specified by SPP. The base case voltages at the point of interconnection for summer and winter are listed in Table 5.1.



| Table 5.1: Base Case Voltage at the Point of Interconnection |
|--------------------------------------------------------------|
|--------------------------------------------------------------|

| Point of Interconnection    | Summer Peak 2010/2011 (pu) | Winter Peak 2010/2011 (pu) |  |  |  |
|-----------------------------|----------------------------|----------------------------|--|--|--|
| Spearville – 345kV (576704) | 0.985                      | 0.982                      |  |  |  |



# 5.1 Facility Outage Contingencies

Single transmission facility outage contingencies specified by SPP are listed in Table 5.2.

| Cont. No. | Description                                                                     |
|-----------|---------------------------------------------------------------------------------|
| 0         | System Intact                                                                   |
| 1         | Outage of the Spearville (531469) to GEN-2007-040 Tap (531000) 345kV line       |
| 2         | Outage of the GEN-2010-016 Tap (576704) to Spearville (531469) 345kV line       |
| 3         | Outage of the Spearville (531469) to Comanche (765341) 345kV lines Ckt 2        |
| 4         | Outage of the Spearville 345kV (531469) to 230kV (539695) transformer           |
| 5         | Outage of the Spearville 230kV (539695) to 115kV (539694) transformer           |
| 6         | Outage of the Spearville 345kV (531469) to 115kV (539694) transformer           |
| 7         | Outage of the Spearville (539695) to Mullergren (539679) 230kV line             |
| 8         | Outage of the Comanche (765341) to Medicine Lodge (765342) 345kV line Ckt1      |
| 9         | Outage of the GEN-2010-016 Tap (576704) to Post Rock (530583) 345kV line        |
| 10        | Outage of the Finney (523853) to Conestoga (560029) 345kV line                  |
| 11        | Outage of the Finney (523853) to Holcomb (531449) 345kV lines                   |
| 12        | Outage of the GEN-2008-018 Tap (531010) to Holcomb (531449) 345kV line          |
| 13        | Outage of the Holcomb 345kV (531449) to 115kV (531448) transformer              |
| 14        | Outage of the Woodward (515375) to GEN-2008-047 Tap 345kV lines Ckt 1 & 2       |
| 15        | Outage of the Knoll (530558) to Post Rock (530584) 230kV line                   |
| 16        | Outage of the Post Rock (530583) to GEN-2011-001 (580129) 345kV line            |
| 17        | Outage of the Post Rock 345kV (530583) to 230kV (530584) transformer            |
| 18        | Outage of the GEN-2008-047 (580500) to GEN-2007-040 Tap (531000) 345kV line     |
| 19        | Outage of the Spearville (531469) to Mullergren (100312) 345kV lines ckt 1 & 2  |
| 20        | Outage of the Medicine Lodge (765342) to Wichita (532796) 345kV lines ckt 1 & 2 |
| 21        | Outage of the Medicine Lodge (765342) to Wichita (532796) 345kV lines ckt 1     |
| 22        | Outage of the GEN-2011-023 (582023) to Comanche (765341) 345kV line             |

#### Table 5.2: List of Power Flow Contingencies

Table 5.3 lists the power factor required of GEN-2010-011 for outage contingencies in Table 5.1 in order to maintain nominal voltage at the POI. The cases for which the 95% power factor requirements are exceeded have been highlighted. The worse cases for lagging and leading power factor are highlighted in yellow. The worst case contingency is the outage of Comanche (765341) to Medicine Lodge (765342) 345kV line Ckt1. The voltage drops to 0.97 in order to keep the power factor equal to 0.95%.

# Table 5.3: Power Factor Requirement at the POI for Power Flow Contingencies in Table 5.1 forGEN-2010-061

| Cont.<br>No. |        | Sumr     | ner    |           | Winter |          |              |         |
|--------------|--------|----------|--------|-----------|--------|----------|--------------|---------|
|              | P (MW) | Q (MVAR) | Powe   | er Factor | P (MW) | Q (MVAR) | Power Factor |         |
| 0            | -176.2 | -62.5    | 94.25% | lagging   | -176.2 | -74.6    | 92.09%       | lagging |



|    |        | 1      |        | •       | 1      |                     |                     | •       |
|----|--------|--------|--------|---------|--------|---------------------|---------------------|---------|
| 1  | -176.2 | -93.4  | 88.35% | lagging | -176.2 | -105.3              | 85.84%              | lagging |
| 2  | -176.6 | 53     | 95.78% | leading | -176.5 | -58                 | 95.00%              | lagging |
| 3  | -176.2 | -74.5  | 92.11% | lagging | -176.2 | -86                 | 89.87%              | lagging |
| 4  | -176.2 | -64.5  | 93.91% | lagging | -176.2 | -76.4               | 91.75%              | lagging |
| 5  | -176.2 | -62.5  | 94.25% | lagging | -176.2 | -74.6               | 92.09%              | lagging |
| 6  | -176.2 | -62.1  | 94.31% | lagging | -176.2 | -75.2               | 91.97%              | lagging |
| 7  | -176.2 | -126.2 | 81.30% | lagging | -176.2 | -136.7              | 79.01%              | lagging |
| 8  | -176.2 | -155.4 | 75.00% | lagging | -176.2 | <mark>-175.2</mark> | <mark>70.91%</mark> | lagging |
| 9  | -176.6 | 53     | 95.78% | leading | -176.5 | 58                  | 95.00%              | leading |
| 10 | -176.2 | -101.8 | 86.59% | lagging | -176.2 | -111.1              | 84.59%              | lagging |
| 11 | -176.2 | -62.5  | 94.25% | lagging | -176.2 | <mark>74.6</mark>   | <mark>92.09%</mark> | leading |
| 12 | -176.2 | -118.2 | 83.05% | lagging | -176.2 | -143.5              | 77.54%              | lagging |
| 13 | -176.2 | -59.1  | 94.81% | lagging | -176.2 | -71.1               | 92.73%              | lagging |
| 14 | -176.2 | -76.1  | 91.80% | lagging | -176.2 | -91.1               | 88.83%              | lagging |
| 15 | -176.2 | -58.7  | 94.87% | lagging | -176.2 | -70.4               | 92.86%              | lagging |
| 16 | -176.2 | -62.5  | 94.25% | lagging | -176.2 | -74.6               | 92.09%              | lagging |
| 17 | -176.2 | -68.6  | 93.19% | lagging | -176.2 | -80.2               | 91.02%              | lagging |
| 18 | -155   | -62.2  | 92.81% | lagging | -176.2 | -172.7              | 71.42%              | lagging |
| 19 | -176.2 | -124.8 | 81.60% | lagging | -176.2 | -144.7              | 77.28%              | lagging |
| 20 | -176.2 | -134.8 | 79.42% | lagging | -176.2 | -161                | 73.82%              | lagging |
| 21 | -176.2 | -134.8 | 79.42% | lagging | -176.2 | -161                | 73.82%              | lagging |
| 22 | -176.2 | -85.6  | 89.95% | lagging | -176.2 | -97.9               | 87.41%              | lagging |

Wind farms are not required by FERC 661-A to operate at the POI beyond a power factor range of  $\pm$ 95% for voltages from 95% to 105% of nominal unless additional reactive power is necessary to prevent voltage collapse or operation of the voltage ride through protection in wind turbine generators.







# 6. Transient Stability Analysis

Transient stability analysis was performed for the fault contingencies in Table 6.1, which were specified by SPP. For the purpose of the transient stability analysis, each of the interconnection request projects was studied with 95% power factor at the POIs.

Table 6.1: SPP Fault Contingencies



| Cont<br>No. | Cont.<br>Name | Description                                                                                                       |  |  |
|-------------|---------------|-------------------------------------------------------------------------------------------------------------------|--|--|
|             |               | 3 phase fault on the Spearville (531469) to GEN-2007-040 Tap (531000) 345kV line, near Spearville.                |  |  |
| 1           | FLT01-3PH     | a. Apply fault at the Spearville 345kV bus.                                                                       |  |  |
|             |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                       |  |  |
|             |               | Single phase fault on the line in previous                                                                        |  |  |
|             |               | a. Apply single phase fault at the Spearville 345kV bus.                                                          |  |  |
| 2           |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                       |  |  |
| 2           | 1102-1711     | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                         |  |  |
|             |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                       |  |  |
| 3 FLT03-3   |               | 3 phase fault on the GEN-2010-016 Tap (576704) to Spearville (531469) 345kV line, near GEN-2010-016 Tap.          |  |  |
|             | FLT03-3PH     | a. Apply fault at GEN-2010-016 Tap 345kV bus.                                                                     |  |  |
|             |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                       |  |  |
|             | FLT04-1PH     | Single phase fault on the line in previous                                                                        |  |  |
|             |               | a. Apply single phase fault at GEN-2010-016 Tap 345kV bus.                                                        |  |  |
| 4           |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                       |  |  |
|             |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                         |  |  |
|             |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                       |  |  |
|             | FLT05-3PH     | 3 phase fault on one of the Spearville (531469) to Comanche (765341) 345kV line Ckt 2, near Spearville.           |  |  |
| 5           |               | a. Apply fault at the Spearville 345kV bus.                                                                       |  |  |
|             |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                       |  |  |
|             |               | Single phase fault on the line in previous                                                                        |  |  |
|             | FLT06-1PH     | a. Apply single phase fault at the Spearville 345kV bus.                                                          |  |  |
| 6           |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                       |  |  |
|             |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                         |  |  |
|             |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                       |  |  |
|             | FLT07-3PH     | 3 phase fault on the Spearville 345kV (531469) to 230kV (539695) transformer, near                                |  |  |
| 7           |               | a. Apply fault at the Spearville 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted transformer. |  |  |



| Cont<br>No. | Cont.<br>Name | Description                                                                                                                                                                                                                                             |  |  |  |
|-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 8           | FLT08-3PH     | <ul> <li>3 phase fault on the Spearville 230kV (539695) to 115kV (539694) transformer , near the 230kV bus.</li> <li>a. Apply fault at the Spearville 230kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted transformer.</li> </ul> |  |  |  |
| 9           | FLT09-3PH     | <ul> <li>3 phase fault on the Spearville 345kV (531469) to 115kV (539694) transformer, near the 345kV bus.</li> <li>a. Apply fault at the Spearville 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted transformer.</li> </ul>  |  |  |  |
|             |               | 3 phase fault on the Spearville (539695) to Mullergren (539679)<br>230kV line, near Spearville.                                                                                                                                                         |  |  |  |
|             |               | a. Apply fault at the Spearville 230kV bus.                                                                                                                                                                                                             |  |  |  |
| 10          | FLT10-3PH     | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                             |  |  |  |
|             |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                                                                                                                                                               |  |  |  |
|             |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                                                                                                                                                             |  |  |  |
| 11          | FLT11-1PH     | Single phase fault and sequence like previous                                                                                                                                                                                                           |  |  |  |
| 12          | FLT12-3PH     | 3 phase fault on the Comanche (765341) to Medicine Lodge (765342) 345kV line Ckt1, near Comanche.                                                                                                                                                       |  |  |  |
|             |               | a. Apply fault at the Comanche 345kV bus.                                                                                                                                                                                                               |  |  |  |
|             |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                             |  |  |  |
|             | FLT13-1PH     | Single phase fault on the line in previous                                                                                                                                                                                                              |  |  |  |
|             |               | a. Apply single phase fault at the Comanche 345kV bus.                                                                                                                                                                                                  |  |  |  |
| 13          |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                             |  |  |  |
| 15          |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                                                                                                                                                               |  |  |  |
|             |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                                                                                                                                                             |  |  |  |
|             | FLT14-3PH     | 3 phase fault on the GEN-2010-016 Tap (576704) to Post Rock (531469) 345kV line, near GEN-2010-016 Tap.                                                                                                                                                 |  |  |  |
| 14          |               | a. Apply fault at GEN-2010-016 Tap 345kV bus.                                                                                                                                                                                                           |  |  |  |
|             |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                             |  |  |  |
|             | FLT15-1PH     | Single phase fault on the line in previous                                                                                                                                                                                                              |  |  |  |
|             |               | a. Apply single phase fault at GEN-2010-016 Tap 345kV bus.                                                                                                                                                                                              |  |  |  |
| 15          |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                             |  |  |  |
|             |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                                                                                                                                                               |  |  |  |
|             |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                                                                                                                                                             |  |  |  |



| Cont<br>·<br>No. | Cont.<br>Name | Description                                                                                                                                                                                                                                       |  |  |
|------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  |               | 3 phase fault on the Finney (523853) to Conestoga (560029) 345kV line, near Finney.                                                                                                                                                               |  |  |
| 16               | FLT16-3PH     | a. Apply fault at the Finney 345kV bus.                                                                                                                                                                                                           |  |  |
|                  |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                       |  |  |
|                  |               | Single phase fault on the line in previous                                                                                                                                                                                                        |  |  |
|                  |               | a. Apply single phase fault at the Finney 345kV bus.                                                                                                                                                                                              |  |  |
| 17               | FLT17-1PH     | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                       |  |  |
|                  |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                                                                                                                                                         |  |  |
|                  |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                                                                                                                                                       |  |  |
|                  | FLT18-3PH     | 3 phase fault on one of the Finney (523853) to Holcomb (531449)<br>345kV lines, near Finney.                                                                                                                                                      |  |  |
| 18               |               | a. Apply fault at the Finney 345kV bus.                                                                                                                                                                                                           |  |  |
|                  |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                       |  |  |
|                  | FLT19-1PH     | Single phase fault on the line in previous                                                                                                                                                                                                        |  |  |
|                  |               | a. Apply single phase fault at the Finney 345kV bus.                                                                                                                                                                                              |  |  |
| 10               |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                       |  |  |
| 19               |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                                                                                                                                                         |  |  |
|                  |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                                                                                                                                                       |  |  |
|                  | FLT20-3PH     | 3 phase fault on the GEN-2008-018 Tap (531010) to Holcomb (531449) 345kV line, near GEN-2008-018 Tap.                                                                                                                                             |  |  |
| 20               |               | a. Apply fault at the GEN-2008-018 Tap 345kV bus.                                                                                                                                                                                                 |  |  |
|                  |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                       |  |  |
|                  |               | Single phase fault on the line in previous                                                                                                                                                                                                        |  |  |
|                  | FLT21-1PH     | a. Apply single phase fault at the GEN-2008-018 Tap 345kV bus.                                                                                                                                                                                    |  |  |
| 21               |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                       |  |  |
| 21               |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                                                                                                                                                         |  |  |
|                  |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                                                                                                                                                       |  |  |
| 22               | FLT22-3PH     | <ul> <li>3 phase fault on the Holcomb 345kV (531449) to 115kV (531448) transformer, near the 345 kV bus.</li> <li>a. Apply fault at the Holcomb 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted transformer.</li> </ul> |  |  |



| Cont<br>No. | Cont.<br>Name | Description                                                                                                      |  |  |  |
|-------------|---------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
|             |               | 3 phase fault on the Woodward (515375) to GEN-2008-047 Tap 345kV lines Ckt 1 & 2, near Woodward.                 |  |  |  |
| 23          | FLT23-3PH     | a. Apply fault at the Woodward 345kV bus.                                                                        |  |  |  |
|             |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                      |  |  |  |
|             |               | Single phase fault on the line in previous                                                                       |  |  |  |
|             |               | a. Apply single phase fault.                                                                                     |  |  |  |
| 24          |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                      |  |  |  |
| 24          | FL124-1PH     | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                        |  |  |  |
|             |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                      |  |  |  |
|             | FLT25-3PH     | 3 phase fault on the Knoll (530558) to Post Rock (530584) 230kV line, near Knoll.                                |  |  |  |
|             |               | a. Apply fault at the Knoll 230kV bus.                                                                           |  |  |  |
| 25          |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                      |  |  |  |
|             |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                        |  |  |  |
|             |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                      |  |  |  |
| 26          | FLT26-1PH     | Single phase fault and sequence like previous                                                                    |  |  |  |
|             | FLT27-3PH     | 3 phase fault on the Post Rock (530583) to Axtell (640065) 345kV line, near Post Rock.                           |  |  |  |
| 27          |               | a. Apply fault at the Post Rock 345kV bus.                                                                       |  |  |  |
|             |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                      |  |  |  |
|             |               | Single phase fault on the line in previous                                                                       |  |  |  |
|             | FLT28-1PH     | a. Apply single phase fault at the Post Rock 345kV bus.                                                          |  |  |  |
| 28          |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                      |  |  |  |
| 20          |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                        |  |  |  |
|             |               | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                      |  |  |  |
|             | FLT29-3PH     | 3 phase fault on the Post Rock 345kV (530583) to 230kV (530584) transformer, near                                |  |  |  |
| 29          |               | a. Apply fault at the Post Rock 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted transformer. |  |  |  |
|             | FLT30-3PH     | 3 phase fault on the GEN-2008-047 (580500) to GEN-2007-040 Tap (531000) 345kV line, near GEN-2007-040 Tap.       |  |  |  |
| 30          |               | a. Apply fault at the GEN-2007-040 Tap 345kV bus.                                                                |  |  |  |
|             |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                      |  |  |  |



| Cont<br>No. | Cont.<br>Name | Description                                                                                                     |  |  |  |
|-------------|---------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| 31          | FLT31-1PH     | Single phase fault and sequence like previous                                                                   |  |  |  |
|             |               | 3 phase fault on the Spearville (531469) to Mullergren (100312)<br>345kV lines ckt 1 & 2, near Spearville.      |  |  |  |
| 32          | FLT32-3PH     | a. Apply fault at the Spearville 345kV bus.                                                                     |  |  |  |
|             |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                     |  |  |  |
|             | FLT33-3PH     | 3 phase fault on the Medicine Lodge (765342) to Wichita (532796)<br>345kV lines ckt 1 & 2, near Medicine Lodge. |  |  |  |
|             |               | a. Apply fault at the Medicine Lodge 345kV bus.                                                                 |  |  |  |
| 33          |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                     |  |  |  |
|             |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                       |  |  |  |
|             |               | <ul> <li>Leave fault on for 5 cycles, then trip the line in (b) and remove<br/>fault.</li> </ul>                |  |  |  |
|             |               | 3 phase fault on the Medicine Lodge (765342) to Wichita (532796)<br>345kV lines ckt 1, near Medicine Lodge.     |  |  |  |
|             |               | a. Apply fault at the Medicine Lodge 345kV bus.                                                                 |  |  |  |
| 34          | FLT34-3PH     | b. Clear fault after 5 cycles by tripping the faulted line.                                                     |  |  |  |
|             |               | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                                       |  |  |  |
|             |               | <ul> <li>Leave fault on for 5 cycles, then trip the line in (b) and remove<br/>fault.</li> </ul>                |  |  |  |
| 35          | FLT35-3PH     | 3 phase fault on one of the GEN-2011-023 (582023) to Comanche (765341) 345kV line, near GEN-2011-023.           |  |  |  |
|             |               | a. Apply fault at the GEN-2011-023 345kV bus.                                                                   |  |  |  |
|             |               | b. Clear fault after 5 cycles by tripping the faulted line.                                                     |  |  |  |
| 36          | FLT36-1PH     | Single phase fault and sequence like previous                                                                   |  |  |  |

Single line-to-ground faults were simulated in a manner consistent with currently accepted practices that is to assume that a single line-to-ground fault will cause a voltage drop at the fault location to 60% of nominal.

The prior queued projects monitored are listed in Table 6.2.



| Request       | Size<br>(MW) | Wind Turbine Model     | Point of Interconnection                                                          |
|---------------|--------------|------------------------|-----------------------------------------------------------------------------------|
| GEN-2001-039A | 105          | Clipper 2.5MW          | Tap on Judson Large – Greensburg 115kV line<br>(579025)                           |
| GEN-2002-025A | 150          | GE 1.5 MW              | Spearville 230kV (539695)                                                         |
| GEN-2004-014  | 154.5        | GE 1.5 MW              | Spearville 230kV (539695)                                                         |
| GEN-2005-012  | 250.7        | Siemens 2.3MW          | Spearville 345kV (531469)                                                         |
| GEN-2006-006  | 205.5        | GE 1.5 MW              | Spearville 345kV (531469)                                                         |
| GEN-2006-021  | 100          | Clipper 2.5MW          | Tap on Harper – Medicine Lodge 138kV line<br>(539638)                             |
| GEN-2006-022  | 150          | Clipper 2.5MW          | Pratt 115kV (539687)                                                              |
| GEN-2007-038  | 200          | Clipper 2.5MW          | Spearville 345kV (531469)                                                         |
| GEN-2008-018  | 405          | GE 1.5 MW              | Finney 345kV (523853)                                                             |
| GEN-2007-040  | 200.1        | Siemens 2.3MW          | Tap on Holcomb – Spearville 345kV line<br>(531000)                                |
| GEN-2008-079  | 99.5         | G.E. 1.5 MW &<br>1.6MW | Tap on Cudahy – Judson Large 115kV line<br>(573029)                               |
| GEN-2008-124  | 200.1        | Siemens 2.3MW          | Spearville 345kV (531469)                                                         |
| GEN-2009-062  | 115          | Genrou                 | Hugoton 115kV (531481)                                                            |
| GEN-2010-009  | 165.6        | Siemens SWT 2.3MW      | Tap on Holcomb – Spearville 345kV line<br>(531000)                                |
| GEN-2010-015  | 200.1        | Siemens SWT 2.3MW      | Spearville 345kV (531469)                                                         |
| GEN-2010-016  | 199.8        | Vestas V90 1.8MW       | Tap on Spearville – Post Rock 345kV line<br>(576704)                              |
| GEN-2010-027  | 900          | GE 2.5 MW              | Comanche 345kV (765341) *not included in the study since the project was canceled |
| GEN-2010-029  | 450          | Vestas V90 1.8MW       | Spearville 345kV (531469)                                                         |
| GEN-2010-045  | 197.8        | Siemens 2.3MW          | Tap on Holcomb – Spearville 345kV line<br>(531000)                                |
| GEN-2010-049  | 49.6         | GE 1.6MW               | Pratt 115kV (539687)                                                              |
| GEN-2010-052  | 301.3        | Siemens 2.3MW          | Finney 345kV (523853)                                                             |
| GEN-2010-053  | 199.8        | Vestas V90 1.8MW       | Comanche 345kV (765341)                                                           |
| GEN-2011-008  | 600          | GE 1.6MW               | Comanche 345kV (765341)                                                           |
| GEN-2011-016  | 200.1        | Siemens 2.3MW          | Spearville 345kV (531469)                                                         |

| Table 6.2. Phor Queued wind Farm Projects Monitored |
|-----------------------------------------------------|
|-----------------------------------------------------|



| GEN-2011-017 | 299 | Siemens 2.3MW | Tap on Spearville – Post Rock 345kV line<br>(576704) |
|--------------|-----|---------------|------------------------------------------------------|
| GEN-2011-023 | 299 | Siemens 2.3MW | Tap on Comanche - Spearville 345kV (582023)          |

Table 6.3 listed voltage and frequency relay settings were used to evaluate fault ride-through capability of WTGs in transient stability analysis.

#### Table 6.3: Siemens SWT 2.3 MW Protection Settings (PSS/E Model Version 1.3)

| Relay Type     | Trip Setting | Time Setting (sec) |
|----------------|--------------|--------------------|
| Undervoltage   | 0.85 (pu)    | 3.0                |
| Undervoltage   | 0.40 (pu)    | 1.6                |
| Undervoltage   | 0.15 (pu)    | 0.85               |
| Overvoltage    | 1.2 (pu)     | 0.15               |
| Overvoltage    | 1.10 (pu)    | 1.0                |
| Underfrequency | 57.0 (Hz)    | 10                 |
| Underfrequency | 56.4 (Hz)    | 0.1                |
| Overfrequency  | 62.4 (Hz)    | 0.1                |



# 6.1 Stability Criteria

Disturbances including three-phase and single-phase to ground faults should not cause synchronous and asynchronous plants to become unstable or disconnect from the transmission grid.

The criterion for synchronous generator stability as defined by NERC is:

"Power system stability is defined as that condition in which the difference of the angular positions of synchronous machine rotor becomes constant following an aperiodic system disturbance."

Voltage magnitudes and frequencies at terminals of asynchronous generators should not exceed magnitudes and durations that will cause protection elements to operate. Furthermore, the response after the disturbance needs to be studied at the terminals of the machine to insure that there are no sustained oscillations in power output, speed, frequency, etc.

Voltage magnitudes and angles after the disturbance should settle to a constant and reasonable operating level. Frequencies should settle to the nominal 60 Hz power frequency.

# 6.2 <u>Transient Stability Results</u>

Undisturbed runs of 20 seconds were performed with the summer and winter peak cases to verify proper initialization of dynamic models.

Group 3 will survive each fault disturbance in Table 6.1. Voltage, frequency and angular stability will be retained. Transient stability plots of the undisturbed runs and #1 through #36 fault contingencies for summer and winter can be found in the Appendix (B and C) section of this report. GEN-2011-016, Siemens 2.3MW at Spearville 345kV (531469), was tripping off at contingencies 28 and 30 in winter peak. The problem is solved by adjusting the transformer tap at the collector bus and the project is able to ride through the fault contingencies. The result for after transformer tap adjustment is attached in Appendix D.

| Cont. No. | Cont. Name | Summer Peak 2010/2011 | Winter Peak 2010/2011 |
|-----------|------------|-----------------------|-----------------------|
| 1         | FLT01-3PH  | STABLE                | STABLE                |
| 2         | FLT02-1PH  | STABLE                | STABLE                |
| 3         | FLT03-3PH  | STABLE                | STABLE                |
| 4         | FLT04-1PH  | STABLE                | STABLE                |
| 5         | FLT05-3PH  | STABLE                | STABLE                |
| 6         | FLT06-1PH  | STABLE                | STABLE                |
| 7         | FLT07-3PH  | STABLE                | STABLE                |
| 8         | FLT08-3PH  | STABLE                | STABLE                |
| 9         | FLT09-3PH  | STABLE                | STABLE                |

#### Table C.C. Cummany of Transient Stability Decult



| Cont. No. | Cont. Name | Summer Peak 2010/2011 | Winter Peak 2010/2011 |
|-----------|------------|-----------------------|-----------------------|
| 10        | FLT10-3PH  | STABLE                | STABLE                |
| 11        | FLT11-1PH  | STABLE                | STABLE                |
| 12        | FLT12-3PH  | STABLE                | STABLE                |
| 13        | FLT13-1PH  | STABLE                | STABLE                |
| 14        | FLT14-3PH  | STABLE                | STABLE                |
| 15        | FLT15-1PH  | STABLE                | STABLE                |
| 16        | FLT16-3PH  | STABLE                | STABLE                |
| 17        | FLT17-1PH  | STABLE                | STABLE                |
| 18        | FLT18-3PH  | STABLE                | STABLE                |
| 19        | FLT19-1PH  | STABLE                | STABLE                |
| 20        | FLT20-3PH  | STABLE                | STABLE                |
| 21        | FLT21-1PH  | STABLE                | STABLE                |
| 22        | FLT22-3PH  | STABLE                | STABLE                |
| 23        | FLT23-3PH  | STABLE                | STABLE                |
| 24        | FLT24-1PH  | STABLE                | STABLE                |
| 25        | FLT25-3PH  | STABLE                | STABLE                |
| 26        | FLT26-1PH  | STABLE                | STABLE                |
| 27        | FLT27-3PH  | STABLE                | STABLE                |
| 28        | FLT28-1PH  | STABLE                | STABLE                |
| 29        | FLT29-3PH  | STABLE                | STABLE                |
| 30        | FLT30-3PH  | STABLE                | STABLE                |
| 31        | FLT31-1PH  | STABLE                | STABLE                |
| 32        | FLT32-3PH  | STABLE                | STABLE                |
| 33        | FLT33-3PH  | STABLE                | STABLE                |
| 34        | FLT34-3PH  | STABLE                | STABLE                |
| 35        | FLT35-3PH  | STABLE                | STABLE                |
| 36        | FLT36-1PH  | STABLE                | STABLE                |

#### 7. Conclusions and Recommendations

Transient analysis results indicate that Preliminary Impact Study PISIS-2011-001 (Group 3) can successfully interconnect into the transmission system at 100% output power and at the desired location. Per FERC 661-A, it is sufficient for Group 3 to deliver ±95% power factor at the POI for each of the outage contingencies specified by SPP.

# L: Stability Study for Group 4

- No requests were located in the cluster group

Preliminary Interconnection System Impact Study for Grouped Generation Interconnection Requests – (PISIS-2011-001) L-1

# <u>M: Stability Study for Group 5</u>

- No requests were located in the cluster group

Preliminary Interconnection System Impact Study for Grouped Generation Interconnection Requests - (PISIS-2011-001) M-1

# N: Stability Study for Group 6

- No requests were located in the cluster group

Preliminary Interconnection System Impact Study for Grouped Generation Interconnection Requests - (PISIS-2011-001) N-1

# <u>O: Stability Study for Group 7</u>

- No requests were located in the cluster group

Preliminary Interconnection System Impact Study for Grouped Generation Interconnection Requests - (PISIS-2011-001) 0-1

## P: Stability Study for Group 8

- No requests were located in the cluster group

Preliminary Interconnection System Impact Study for Grouped Generation Interconnection Requests - (PISIS-2011-001) P-1

# <u>Q: Stability Study for Group 9</u>

- No requests were located in the cluster group

# R: Stability Study for Group 10

- No requests were located in the cluster group

# S: Stability Study for Group 11

- See report below
Pterra Consulting

Technical Report R132-11 Impact Study for Generation Interconnection Request PISIS-2011-001 Group 11



Submitted to



This page intentionally left blank

## Contents

| Section 1. Introduction2          |   |
|-----------------------------------|---|
| 1.1. Project Overview             | 2 |
| 1.2. Objectives                   |   |
| Section 2. Power Factor Analysis4 |   |
| 2.1. Methodology                  | 4 |
| 2.2. Analysis                     | 4 |
| 2.3. Conclusion                   | 5 |
| Section 3. Stability Analysis7    |   |
| 3.1. Assumptions                  | 7 |
| 3.2. Faults Simulated             | 7 |
| 3.3. Simulation Results           |   |
| Section 4. Conclusions11          |   |

This page intentionally left blank

#### **Executive Summary**

This report presents the results of the Prerliminary Impact Study Interconnection Request PISIS-2011-001 (group 11) which includes GEN-2011-001 (the "Project"). The rsults of the impact study comprising of power factor and stability analyses. The Project has a nominal 200.1 MW maximum rating studied using Siemens 2.3 MW wind turbine generators ("WTGs"). The Point of Interconnection ("POI") is a new 345 kV tap on the existing Post Rock-Axtell 345 kV line.

The analysis was conducted through the Southwest Power Pool ("SPP") Tariff. Power factor analysis and transient stability simulations were conducted with the Project in service at full output of 200.1 MW.

Two base cases, 2011 summer peak and 2011 winter peak conditions, each comprising of a power flow and corresponding dynamics database were provided by SPP.

#### **Power Factor Test**

The results of the power factor analysis showed that with the MVAR capability of the Siemens WTG , GEN-2011-001 is required to maintain a 97% leading (supplying VARs) to 97% lagging (absorbing VARs) power factor at the point of interconnection.

#### **Stability Simulations**

Twenty-six (26) faults were considered for the transient stability simulations which included three-phase faults and single-line-to-ground faults at the locations defined by SPP. The results of the simulation showed neither angular nor voltage instability problems in the SPP system for the twenty-six faults. The study finds that the interconnection of the proposed project does not impact the stability performance of the SPP system for the faults tested on the supplied base cases.

### Introduction

#### **Project Overview**

This report presents the results of the Prerliminary Impact Study Interconnection Request PISIS-2011-001 (group 11) which includes GEN-2011-001 (the "Project"). The rsults of the impact study comprising of power factor and stability analyses. The Project has a nominal 200.1 MW maximum rating studied using Siemens 2.3 MW wind turbine generators ("WTGs"). The Point of Interconnection ("POI") is a new 345 kV tap on the existing Post Rock-Axtell 345 kV line.

Figures 1-1 shows the interconnection diagram of the Project to SPP's system as modeled in the power flow cases.



Figure 0-1 Power Flow Model for GEN-2011-001

Table 0-2 shows the list of prior queued projects modeled in the base case.

| Request       | Size<br>(MW) | Wind Turbine Model      | Point of Interconnection                         |
|---------------|--------------|-------------------------|--------------------------------------------------|
| GEN-2003-006A | 201          | Vestas V90 3.0MW        | Elm Creek 230kV                                  |
| GEN-2003-019  | 247.5        | GE 1.5MW & Vestas 3.0MW | Smoky Hills 230kV                                |
| GEN-2006-031  | 75           | Gas                     | Knoll 115kV                                      |
| GEN-2006-032  | 200          | Gamesa 2.0MW            | South Hays 230kV                                 |
| GEN-2008-092  | 201          | GE 1.5MW                | Knoll 230kV                                      |
| GEN-2009-011  | 49.7         | Siemens 2.3MW           | Tap on the Plainville to Phillipsburg 115kV line |
| GEN-2009-008  | 200          | GE 1.6MW                | South Hays 230kV                                 |
| GEN-2009-020  | 48.6         | Vestas V90 1.8MW (GE)   | Tap on the Balzine to Nekoma 69kV line           |
| GEN-2010-048  | 70           | Nordex 2.5MW            | Tap on the Ross Beach to Redline 115kV line      |
| GEN-2010-057  | 201          | GE 1.5MW                | Rice County 230kV                                |

Table 0-2 List of Prior Queued Projects

#### <u>Objectives</u>

The objectives of the study are to conduct power factor analysis and to determine the impact of interconnecting the proposed Project on SPP's system stability.

# **Power Factor Analysis**

#### <u>Methodology</u>

Power factor analysis was conducted for the Project using a methodology which is summarized as follows:

- 1. Turn off the Project wind farm as modeled (as well as prior queued projects at the same point of interconnection). Replace the wind farms by a generator at the high side bus with the MW of the wind farms and no VAR capability.
- 2. Model a VAR generator at the wind farm's substation high voltage bus. The VAR generator is set to hold a voltage schedule at the POI consistent with the voltage schedule in the provided power flow cases for summer and winter or 1.0 p.u. voltage, whichever is higher.
- 3. Conduct steady state contingency analysis to determine the power factor necessary at the POI for each contingency.
- 4. If the required power factor at the POI is beyond the capability of the studied wind turbines, capacitor banks may be considered for the stability analysis. The preference is to locate the capacitance banks on the 34.5 kV customer side. Factors to sizing capacitor banks include:
  - 4.1. The ability of the wind farm to meet FERC Order 661A (low voltage ride through) with and without capacitor banks.
  - 4.2. The ability of the wind farm to meet FERC Order 661A (wind farm recovery to pre-fault voltage).
  - 4.3. If wind farms trips on high voltage, power factor lower than unity may be required.

#### <u>Analysis</u>

The 200.1 MW Project wind farm was turned off in the power flow model. A 200.1 MW plant with no VAR capability was modeled at the Project's 345 kV bus. A VAR generator was also modeled at the same bus and was set to hold a voltage of 1.00 p.u. at the POI. The pre-contingency voltages at POI in the provided power flow models are 0.998 and 0.993 in the summer and winter cases, respectively.

The VAR generator either supplies or absorbs reactive power for different contingencies as summarized in Table 2-1. The highest values obtained are as follows:

1. For the summer case, the VAR generator supplies 37.7 MVAR for the outage of Axtell-Sweet Water 345 kV line and absorbs 53.7 MVAR for the loss of

Axtell 345/115 kV transformer. The corresponding power factors are 98% (lead) and 97% (lag), respectively.

- For the winter case, the VAR generator supplies 53.6 MVAR for the outage of Axtell-Sweet Water 345 kV line and absorbs 50.2 MVAR for the loss of Gen-2011-001 Tap-Axtell 345 kV line. The corresponding power factors are 97% (lead) and 97% (lag), respectively.
- 3. The corresponding power factor requirements for GEN-2011-001 are 97% leading (supplying VARs) and 97% lagging (absorbing VARs)

| CASE | CONTINGENCY                               | POWER FACTOR |      | MW @<br>POI | VARGEN<br>MVAR |
|------|-------------------------------------------|--------------|------|-------------|----------------|
|      | BASE CASE                                 | 0.99         | Lag  | 200.1       | -23.3          |
|      | MULLERGREN - SPEARVILLE 230 KV LINE       | 1.00         | Lag  | 200.1       | -19.0          |
|      | SMOKY HILLS - KNOLL 230 KV LINE           | 1.00         | Lag  | 200.1       | -5.8           |
|      | POST ROCK - KNOLL 230 KV LINE             | 0.98         | Lag  | 200.1       | -41.4          |
|      | POST ROCK - SOUTH HAYS 230 KV LINE        | 0.99         | Lag  | 200.1       | -25.6          |
|      | POST ROCK 230 KV - 345 KV TRANSFORMER     | 0.99         | Lag  | 200.1       | -27.4          |
|      | MINGO - RED WILLOW 345 KV LINE            | 1.00         | Lag  | 200.1       | -6.2           |
| SP   | GEN-2011-001 TAP - POST ROCK 345 KV LINE  | 0.98         | Lag  | 200.1       | -37.2          |
|      | GEN-2011-001 TAP - AXTELL 345 KV LINE     | 0.97         | Lag  | 200.1       | -52.3          |
|      | GEN-2007-040 TAP - SPEARVILLE 345 KV LINE | 0.99         | Lag  | 200.1       | -29.3          |
|      | GEN-2010-016 TAP - SPEARVILLE 345 KV LINE | 1.00         | Lead | 200.1       | 8.8            |
|      | COMANCHE - MEDICINE LODGE 345 KV LINE     | 1.00         | Lag  | 200.1       | -10.7          |
|      | AXTELL - PAULINE 345 KV LINE              | 1.00         | Lag  | 200.1       | -9.4           |
|      | AXTELL - SWEET WATER 345 KV LINE          | 0.98         | Lead | 200.1       | 37.7           |
|      | AXTELL 115 KV - 345 KV TRANSFORMER        | 0.97         | Lag  | 200.1       | -53.7          |
|      | BASE CASE                                 | 1.00         | Lag  | 200.1       | -0.1           |
|      | MULLERGREN - SPEARVILLE 230 KV LINE       | 1.00         | Lead | 200.1       | 4.4            |
| -    | SMOKY HILLS - KNOLL 230 KV LINE           | 1.00         | Lead | 200.1       | 16.8           |
|      | POST ROCK - KNOLL 230 KV LINE             | 0.99         | Lag  | 200.1       | -28.5          |
|      | POST ROCK - SOUTH HAYS 230 KV LINE        | 1.00         | Lag  | 200.1       | -7.2           |
|      | POST ROCK 230 KV - 345 KV TRANSFORMER     | 1.00         | Lag  | 200.1       | -5.2           |
|      | MINGO - RED WILLOW 345 KV LINE            | 1.00         | Lead | 200.1       | 15.1           |
| WP   | GEN-2011-001 TAP - POST ROCK 345 KV LINE  | 0.98         | Lag  | 200.1       | -36.9          |
|      | GEN-2011-001 TAP - AXTELL 345 KV LINE     | 0.97         | Lag  | 200.1       | -50.2          |
| -    | GEN-2007-040 TAP - SPEARVILLE 345 KV LINE | 1.00         | Lag  | 200.1       | -8.7           |
|      | GEN-2010-016 TAP - SPEARVILLE 345 KV LINE | 0.99         | Lead | 200.1       | 32.0           |
|      | COMANCHE - MEDICINE LODGE 345 KV LINE     | 1.00         | Lead | 200.1       | 8.9            |
|      | AXTELL - PAULINE 345 KV LINE              | 1.00         | Lag  | 200.1       | -2.9           |
|      | AXTELL - SWEET WATER 345 KV LINE          | 0.97         | Lead | 200.1       | 53.6           |
|      | AXTELL 115 KV - 345 KV TRANSFORMER        | 0.99         | Lag  | 200.1       | -20.8          |

Table 0-1 VAR Generator Output in Summer and Winter Peak Cases for GEN-2011-001

#### **Conclusion**

Based on the reactive capability of the Siemens WTGs and the results of the power factor test, GEN-2011-001 is required to maintain a 97% leading (supplying VARs) to 97% lagging (absorbing VARs) power factor at the point of interconnection.

# **Stability Analysis**

#### Assumptions

The following assumptions were adopted for the dynamic simulations:

- 1. Constant maximum and uniform wind speed for the entire period of study.
- 2. Wind turbine control models with their default values.
- 3. Under/over voltage/frequency protection use manufacturer settings.

#### Faults Simulated

Twenty-six (26) faults were considered for the transient stability simulations which included three phase and single-phase line faults at the locations defined by SPP. Single-phase line faults were simulated by applying a fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP current practice. Prior queued projects shown in Table 0-2 and units in areas 520, 524, 525, 526, 531, 534, 536, 640, 645, and 650 were monitored in the simulations.

Table 0-1 shows the list of simulated contingencies. It also shows the fault clearing time and the time delay before re-closing for all the studied faults.

|       |           | Table 0-1 List of Simulated Faults                                                                                                                                                                                                                                                                                                                                                                            |
|-------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cont. | Cont.     | Description                                                                                                                                                                                                                                                                                                                                                                                                   |
| No.   | Name      |                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37    | FLT01-3PH | <ul> <li>3 phase fault on the Mullergren (539679) – Spearville (539695) 230kV line, near Mullergren.</li> <li>a. Apply fault at Mullergren 230kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul> |
| 38    | FLT02-1PH | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                 |
| 39    | FLT03-3PH | 3 phase fault on the Smoky Hills (530592) to Knoll (530558) 230kV line, near Smoky Hills.<br>a. Apply fault at Smoky Hills 230kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.<br>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.<br>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                              |
| 40    | FLT04-1PH | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                 |
| 41    | FLT05-3PH | 3 phase fault on the Post Rock (530584) to Knoll (530558) 230kV line, near Post Rock.<br>a. Apply fault at Post Rock 230kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.<br>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.<br>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                                    |
| 42    | FLT06-1PH | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                 |
| 43    | FLT07-3PH | <ul> <li>3 phase fault on the Post Rock (530584) to South Hays (530582) 230kV line, near Post Rock.</li> <li>a. Apply fault at Post Rock 230kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>   |
| 44    | FLT08-1PH | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                 |
| 45    | FLT09-3PH | 3 phase fault on one of the Post Rock 230kV (530584) to 345kV (530583) transformers, near the 230kV bus.<br>a. Apply fault at Post Rock 230kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted transformer.                                                                                                                                                                                      |
| 46    | FLT10-3PH | 3 phase fault on the Mingo (531451) to Red Willow (640325) 345kV line, near Mingo.<br>a. Apply fault at Mingo 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                                                       |
| 47    | FLT11-1PH | Single phase fault on the line in previous fault.<br>a. Apply fault at Mingo 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.<br>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.<br>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                                                                            |
| 48    | FLT12-3PH | 3 phase fault on the GEN-2011-001 Tap (580129) to Post Rock (530583) 345kV line, near GEN-2011-001 Tap.<br>a. Apply fault at GEN-2011-001 Tap 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                       |
| 49    | FLT13-1PH | Single phase fault on the line in previous fault.<br>a. Apply fault at GEN-2011-001 Tap 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.<br>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.<br>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                                                                 |
| 50    | FLT14-3PH | 3 phase fault on the GEN-2011-001 Tap (580129) to Axtell (640065) 345kV line, near GEN-2011-001 Tap.<br>a. Apply fault at GEN-2011-001 Tap 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                          |

| Cont. | Cont.     |                                                                                                                                                                                                                                                                                                                                                                           |  |
|-------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No.   | Name      | Description                                                                                                                                                                                                                                                                                                                                                               |  |
| 51    | FLT15-1PH | Single phase fault on the line in previous fault.<br>a. Apply fault at GEN-2011-001 Tap 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.<br>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.<br>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                             |  |
| 52    | FLT16-3PH | 3 phase fault on the GEN-2007-040 Tap (531000) to Spearville (531469) 345kV line, near GEN-2007-040 Tap.<br>a. Apply fault at GEN-2007-040 Tap 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                  |  |
| 53    | FLT17-1PH | <ul> <li>Single phase fault on the line in previous fault.</li> <li>a. Apply fault at GEN-2007-040 Tap 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul> |  |
| 54    | FLT18-3PH | 3 phase fault on the GEN-2010-016 Tap (576704) to Spearville (531469) 345kV line, near GEN-2010-016 Tap.<br>a. Apply fault at GEN-2010-016 Tap 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                  |  |
| 55    | FLT19-1PH | Single phase fault on the line in previous fault.<br>a. Apply fault at GEN-2010-016 Tap 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.<br>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.<br>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                             |  |
| 56    | FLT20-3PH | 3 phase fault on one of the Comanche (531451) to Medicine Lodge (765342) 345kV lines, near Comanche.<br>a. Apply fault at Comanche 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                              |  |
| 57    | FLT21-1PH | Single phase fault on the line in previous fault.<br>a. Apply fault at Comanche 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.<br>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.<br>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                                     |  |
| 58    | FLT22-3PH | 3 phase fault on the Axtell (640065) to Pauline (640312) 345kV line, near Axtell.<br>a. Apply fault at Axtell 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                                   |  |
| 59    | FLT23-1PH | Single phase fault on the line in previous fault.<br>a. Apply fault at Axtell 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.<br>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.<br>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                                                       |  |
| 60    | FLT24-3PH | 3 phase fault on the Axtell (640065) to Sweet Water (640374) 345kV line, near Axtell.<br>a. Apply fault at Axtell 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted line.                                                                                                                                                                               |  |
| 61    | FLT25-1PH | <ul> <li>Single phase fault on the line in previous fault.</li> <li>a. Apply fault at Axtell 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>           |  |
| 62    | FLT26-3PH | 3 phase fault on the Axtell 115kV (640066) to 345kV (640065) transformer, near the 115kV bus.<br>a. Apply fault at Axtell 115kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted transformer.                                                                                                                                                                |  |

The simulations were performed with a 0.5-second steady-state run followed by the appropriate disturbance as described in Table 0-1. Simulations were run for a minimum 10-second duration to confirm proper machine damping.

#### **Simulation Results**

The stability simulations with the twenty-six specified faults did not find any angular or voltage instability problems in the SPP system. The study finds that the interconnection of the proposed project does not impact the stability performance of the SPP system for the faults tested on the supplied base cases.

The findings of GEN-2011-001 impact study are as follows:

The results of the power factor analysis showed that with the MVAR capability of the Siemens WTG, GEN-2011-001 is required to maintain a 97% leading (supplying VARs) to 97% lagging (absorbing VARs) power factor at the point of interconnection.

The stability simulations with the twenty-six specified faults did not find any angular or voltage instability problems in the SPP system. The study finds that the interconnection of the proposed project does not impact the stability performance of the SPP system for the faults tested on the supplied base cases.

## T: Stability Study for Group 12

- No requests were located in the cluster group

## <u>U: Stability Study for Group 13</u>

- See report below



MITSUBISHI ELECTRIC POWER PRODUCTS, INC. POWER SYSTEMS ENGINEERING SERVICES 530 KEYSTONE DRIVE WARRENDALE, PA 15086, U.S.A.

Phone: (724) 778-5111 Fax: (724) 778-5149 Home Page: www.meppi.com

# **Southwest Power Pool, Inc. (SPP)**

# Preliminary Impact Study PISIS-2011-001: Group 13

**Final Report** 

PXE-0500 Revision #01

## August 2011

Submitted By: Mitsubishi Electric Power Products, Inc. (MEPPI) Power Systems Engineering Services Department Warrendale, PA

Power Systems Engineering Services Department (PSES)

| Title:    | Preliminary Impact Study PISIS-2011-001: Group 13: Final Report PXE-0500 |                          |  |  |
|-----------|--------------------------------------------------------------------------|--------------------------|--|--|
| Date:     | August 2011                                                              |                          |  |  |
| Author:   | Nicholas W. Tenza; Engineer I, Power Systems Engineering Dept.           | <u>Nicholas W. Tenza</u> |  |  |
|           | Elizabeth M. Cook; Sr. Engineer, Power Systems Engineering Dept.         | <u>Elizabeth M. Cook</u> |  |  |
| Reviewed: | Robert T. Hellested, Deputy Mngr., Power Systems Engineering Dept.       | Robert T. Hellested      |  |  |

#### **EXECUTIVE SUMMARY**

SPP requested an Interconnection System Impact Study for PISIS-2011-001: Group 13. The Interconnection System Impact Study required a Power Factor Analysis and a Stability Analysis detailing the impacts of the study interconnecting project as shown in Table ES-1.

Table ES-1Interconnection Project Evaluated

| Request      | Size<br>(MW) | TurbineModel   | Point of Interconnection (POI)                      |
|--------------|--------------|----------------|-----------------------------------------------------|
| GEN-2010-044 | 99           | Siemens 2.3 MW | Tap on the Harbine to Beatrice 115 kV line (580056) |

#### SUMMARY OF POWER FACTOR ANALYSIS

Power Factor Analysis shows that GEN-2010-044 has a power factor range of 0.9098 to 0.9993 leading (absorbing).

#### SUMMARY OF STABILITY ANALYSIS

The Stability Analysis determined that no wind turbine tripping or system instability occurs from interconnecting GEN-2010-044 at 100% output.





#### **Table of Contents**

| Section 1: Objectives            | 3  |
|----------------------------------|----|
| Section 2: Background            | 3  |
| Section 3: Power Factor Analysis | 8  |
| Section 4: Stability Analysis    | 9  |
| Section 5: Conclusions           | 15 |

#### List of Tables

| Table 2-1: Interconnection Project Evaluated                          | 4   |
|-----------------------------------------------------------------------|-----|
| Table 2-2: Previously Queued Nearby Interconnection Projects Included | 4   |
| Table 2-3: Case List with Contingency Description                     | 6   |
| Table 3-1: Power Factor Analysis – GEN-2010-044 (99 MW)               | 9   |
| Table 4-1: Calculated Single-Phase Fault Impedances                   | .10 |
| Table 4-2: Stability Analysis Summary of Results                      | .12 |

#### **List of Figures**

| Figure 2-1. Power flow one-line diagram for interconnection project GEN-2010-044      | . 5 |
|---------------------------------------------------------------------------------------|-----|
| Figure 4-1. Response of GEN-2010-044 for case FLT22-3PH for summer peak conditions    | 13  |
| Figure 4-2. Response of selected area bus voltages for case FLT22-3PH for summer peak |     |
| conditions                                                                            | 14  |
|                                                                                       |     |

#### **SECTION 1: OBJECTIVES**

The objective of this report is to provide Southwest Power Pool, Inc. (SPP) with the deliverables for the "Preliminary Impact Study PISIS-2011-001: Group 13." SPP requested an Interconnection System Impact Study for GEN-2010-044, which requires a Power Factor Analysis, a Stability Analysis, and an Impact Study Report.

#### **SECTION 2: BACKGROUND**

The Siemens Power Technologies, Inc. PSS/E power system simulation program Version 30.3.3 was used for this study. SPP provided the stability database cases for both summer peak<sup>1</sup> and winter peak<sup>2</sup> seasons and a list of contingencies to be examined. The model includes the study project and the previously queued projects as listed in Table 2-1 and Table 2-2, respectively. Refer to Appendix A for the steady-state and dynamic model data for the study project. A power flow one-line diagram of GEN-2010-044 interconnection project is shown in Figure 2-1.

The Power Factor analysis will determine the power factor at the point of interconnection for the wind interconnection project for pre-contingency and post-contingency conditions. Table 2-3 lists the contingencies developed from the three-phase fault definitions provided in the Group's interconnection impact study request.

The Stability Analysis will determine the impacts of the new interconnecting project on the stability and voltage recovery of the nearby system and the ability of the interconnecting project to meet FERC Order 661A. If problems with stability or voltage recovery are identified, the need for reactive compensation or system upgrades will be investigated. Three-phase and single-phase faults will be examined as listed in Table 2-3.

<sup>&</sup>lt;sup>1</sup> *MDWG\_2010\_2011SP\_PISIS-2010-044.sav – summer peak filename.* 

<sup>&</sup>lt;sup>2</sup> *MDWG\_2010\_2011WP\_PISIS-2010-044.sav – winter peak filename.* 



Table 2-1Interconnection Project Evaluated

| Request      | Size<br>(MW) | TurbineModel   | Point of Interconnection (POI)                      |
|--------------|--------------|----------------|-----------------------------------------------------|
| GEN-2010-044 | 99           | Siemens 2.3 MW | Tap on the Harbine to Beatrice 115 kV line (580056) |

| Request       | Size<br>(MW)  | TurbineModel      | Point of Interconnection (POI)                            |
|---------------|---------------|-------------------|-----------------------------------------------------------|
| GEN-2006-014  | 300           | G.E. 1.5 MW       | WFarms 161 kV (89572)                                     |
| GEN-2006-017  | 300           | Clipper 2.5 MW    | WFarms 161 kV (89572)                                     |
| GEN-2007-015  | 135           | G.E. 1.5 MW       | Tap on the Humboldt to Kelley 161 kV line (579244)        |
| GEN-2007-017  | 99            | G.E. 1.5 MW       | WFarms 161 kV (89572)                                     |
| GEN-2007-053  | 110           | Gamesa 2.0 MW     | WFarms 161 kV (89572)                                     |
| GEN-2008-119O | 60            | G.E. 1.5 MW       | S1399 161 kV (646399)                                     |
| GEN-2008-129  | 641/675<br>MW | Combined Cycle    | Pleasant Hill 161 kV (541225)                             |
| GEN-2009-040  | 73.8          | Vestas V90 1.8 MW | Tap on Smittyville Coop to Knob Hill 115 kV line (560287) |
| GEN-2010-036  | 4.6           | GENROU            | 6th Street 115 kV (533264)                                |
| GEN-2010-041  | 10.5          | G.E. 1.5 MW       | S1399 161 kV (646399)                                     |
| GEN-2010-047  | 72            | G.E. 1.6 MW       | Tap on the Beatrice to Harbine 115 kV line (580056)       |
| GEN-2010-056  | 151           | Vestas V90 1.8 MW | Tap on Saint Joseph to Cooper 345 kV line (582056)        |
| GEN-2011-011  | 50            | GENROU            | Iatan 345 kV (542982)                                     |
| GEN-2011-018  | 73.6          | Siemens 2.3 MW    | Steele City 115 kV (640246)                               |

Table 2-2Previously Queued Nearby Interconnection Projects Included







Figure 2-1. Power flow one-line diagram for interconnection project GEN-2010-044.

| Table 2-3                              |
|----------------------------------------|
| Case List with Contingency Description |

| Ref.<br>No. | Case Name | Description                                                                                      |  |  |  |
|-------------|-----------|--------------------------------------------------------------------------------------------------|--|--|--|
|             |           | 3 phase fault on the Fairport (300039) to Cooper (640139) 345 kV line, near Fairport.            |  |  |  |
| 1           | FLT01-3PH | a. Apply fault at Fairport 345 kV bus.                                                           |  |  |  |
|             |           | b. Clear fault after 5 cycles by tripping the faulted line.                                      |  |  |  |
| 2           | FLT02-1PH | Single phase fault and sequence like previous                                                    |  |  |  |
|             |           | 3 phase fault on the Cooper (640139) to Atchison (635017) 345 kV line, near Cooper.              |  |  |  |
| 3           | FLT03-3PH | a. Apply fault at Cooper 345 kV bus.                                                             |  |  |  |
|             |           | b. Clear fault after 5 cycles by tripping the faulted line.                                      |  |  |  |
| 4           | FLT04-1PH | Single phase fault and sequence like previous                                                    |  |  |  |
|             |           | 3 phase fault on the Moore (640277) to Cooper (640139) 345 kV line, near Moore.                  |  |  |  |
| 5           | FLT05-3PH | a. Apply fault at Moore 345 kV bus.                                                              |  |  |  |
|             |           | b. Clear fault after 5 cycles by tripping the faulted line.                                      |  |  |  |
| 6           | FLT06-1PH | Single phase fault and sequence like previous                                                    |  |  |  |
|             |           | 3 phase fault on the Nebraska City (645458) to Cooper (640139) 345 kV line, near Cooper.         |  |  |  |
| 7           | FLT07-3PH | a. Apply fault at Cooper 345 kV bus.                                                             |  |  |  |
|             |           | b. Clear fault after 5 cycles by tripping the faulted line.                                      |  |  |  |
| 8           | FLT08-1PH | Single phase fault and sequence like previous                                                    |  |  |  |
|             |           | 3 phase fault on the Cooper (640139) to 161 kV transformer on the 345 kV bus.                    |  |  |  |
| 9           | FLT09-3PH | a. Apply fault at Cooper 345 kV bus.                                                             |  |  |  |
|             |           | b. Clear fault after 5 cycles by tripping the faulted line.                                      |  |  |  |
|             |           | 3 phase fault on the Steele City (640426) to Harbine (640208) 115kV line, near Harbine.          |  |  |  |
|             |           | a. Apply fault at Harbine 115 kV bus.                                                            |  |  |  |
| 10          | FLT10-3PH | b. Clear fault after 5 cycles by tripping the faulted line.                                      |  |  |  |
|             |           | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                        |  |  |  |
|             |           | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                      |  |  |  |
| 11          | FLT11-1PH | Single phase fault and sequence like previous                                                    |  |  |  |
|             |           | 3 phase fault on the Steele City (640426) to Knob Hill (533332) 115kV line, near Steele City.    |  |  |  |
|             |           | a. Apply fault at Steele City 115 kV bus.                                                        |  |  |  |
| 12          | FLT12-3PH | b. Clear fault after 5 cycles by tripping the faulted line.                                      |  |  |  |
|             |           | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                        |  |  |  |
|             |           | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                      |  |  |  |
| 13          | FLT13-1PH | Single phase fault and sequence like previous                                                    |  |  |  |
|             |           | 3 phase fault on the Knob Hill (533332) to Greenleaf (539665) 115kV line, near Knob Hill.        |  |  |  |
|             |           | a. Apply fault at Knob Hill 115 kV bus.                                                          |  |  |  |
| 14          | FLT14-3PH | b. Clear fault after 5 cycles by tripping the faulted line.                                      |  |  |  |
|             |           | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                        |  |  |  |
|             |           | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                      |  |  |  |
| 15          | FLT15-1PH | Single phase fault and sequence like previous                                                    |  |  |  |
|             |           | 3 phase fault on the Knob Hill (533332) to GEN-2009-040 Tap (560287) 115kV line, near Knob Hill. |  |  |  |
|             |           | a. Apply fault at Knob Hill 115 kV bus.                                                          |  |  |  |
| 16          | FLT16-3PH | b. Clear fault after 5 cycles by tripping the faulted line.                                      |  |  |  |
|             |           | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                        |  |  |  |
|             |           | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                      |  |  |  |
| 17          | FLT17-1PH | Single phase fault and sequence like previous                                                    |  |  |  |



٦

#### Table 2-3 (continued) **Case List with Contingency Description**

| Ref.<br>No. | Case Name  | Description                                                                                            |  |  |  |
|-------------|------------|--------------------------------------------------------------------------------------------------------|--|--|--|
|             |            | 3 phase fault on the Harbine (640208) to Fairbury (640169) 115kV line, near Harbine.                   |  |  |  |
|             |            | a. Apply fault at Harbine 115 kV bus.                                                                  |  |  |  |
| 18          | FLT18-3PH  | b. Clear fault after 5 cycles by tripping the faulted line.                                            |  |  |  |
|             |            | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                              |  |  |  |
|             |            | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                            |  |  |  |
| 19          | FLT19-1PH  | Single phase fault and sequence like previous                                                          |  |  |  |
|             |            | 3 phase fault on the GEN-2010-047 Tap (580056) to Harbine (640208) 115kV line, near GEN-2010-047       |  |  |  |
|             |            | Tap.                                                                                                   |  |  |  |
| 20          | EI T20 3DH | a. Apply fault at GEN-2010-047 Tap 115 kV bus.                                                         |  |  |  |
| 20          | 12120-5111 | b. Clear fault after 5 cycles by tripping the faulted line.                                            |  |  |  |
|             |            | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                              |  |  |  |
|             |            | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                            |  |  |  |
| 21          | FLT21-1PH  | Single phase fault and sequence like previous                                                          |  |  |  |
|             |            | 3 phase fault on the GEN-2010-047 Tap (580056) to Beatrice (640076) 115kV line, near GEN-2010-047 Tap. |  |  |  |
| 22          |            | a. Apply fault at GEN-2010-047 Tap 115 kV bus.                                                         |  |  |  |
| 22          | FL122-3PH  | b. Clear fault after 5 cycles by tripping the faulted line.                                            |  |  |  |
|             |            | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                              |  |  |  |
|             |            | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                            |  |  |  |
| 23          | FLT23-1PH  | Single phase fault and sequence like previous                                                          |  |  |  |
|             | FLT24-3PH  | 3 phase fault on the Beatrice (640076) to Beatrice Power Station (640088) 115kV line, near Beatrice.   |  |  |  |
|             |            | a. Apply fault at Beatrice 115 kV bus.                                                                 |  |  |  |
| 24          |            | b. Clear fault after 5 cycles by tripping the faulted line.                                            |  |  |  |
|             |            | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                              |  |  |  |
|             |            | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                            |  |  |  |
| 25          | FLT25-1PH  | Single phase fault and sequence like previous                                                          |  |  |  |
|             | FLT26-3PH  | 3 phase fault on the Beatrice (640076) to Steiner (640361) 115kV line, near Beatrice.                  |  |  |  |
|             |            | a. Apply fault at Beatrice 115 kV bus.                                                                 |  |  |  |
| 26          |            | b. Clear fault after 5 cycles by tripping the faulted line.                                            |  |  |  |
|             |            | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                              |  |  |  |
|             |            | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                            |  |  |  |
| 27          | FLT27-1PH  | Single phase fault and sequence like previous                                                          |  |  |  |
|             |            | 3 phase fault on the Beatrice Power Station (640088) to Clatonia (640111) 115kV line, near Beatrice    |  |  |  |
|             |            | Power Station.                                                                                         |  |  |  |
| 28          | EI T28 3DH | a. Apply fault at Beatrice Power Station 115 kV bus.                                                   |  |  |  |
| 28          | FL128-3PH  | b. Clear fault after 5 cycles by tripping the faulted line.                                            |  |  |  |
|             |            | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.                              |  |  |  |
|             |            | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.                            |  |  |  |
| 29          | FLT29-1PH  | Single phase fault and sequence like previous                                                          |  |  |  |
|             |            | 3 phase fault on the Sheldon 115 kV (640278) to Moore 345 kV (640277) transformer on the 345 kV bus.   |  |  |  |
| 30          | FLT30-3PH  | a. Apply fault at Moore 345 kV bus.                                                                    |  |  |  |
|             |            | b. Clear fault after 5 cycles by tripping the faulted line.                                            |  |  |  |



#### SECTION 3: POWER FACTOR ANALYSIS

#### Task Objective

The objective of this task is to quantify the power factor at the point of interconnection for the wind farm during base case and system contingencies. SPP transmission planning practice requires interconnecting generation projects to maintain the power factor (pf) at the Point of Interconnection (POI) near unity for system intact conditions and within  $\pm$  0.95 pf for post-contingency conditions.

#### **Approach**

Both winter peak and summer peak power flows provided by SPP were examined prior to the Power Factor Analysis to ensure they contained the proposed study project modeled at 100% of the nameplate rating and any previously queued projects listed in Table 2-2. There was no suspect power flow data in the study area. The proposed study project at the point of interconnection was turned off during the power factor analysis. The wind farm was then replaced by a generator modeled at the point of interconnection bus with the same real power (MW) capability as the wind farm and open limits for the reactive power set points (Mvar). The generator was set to hold the POI scheduled bus voltage. Contingencies from the three-phase fault definitions provided in Table 2-3 were then applied and the reactive power required to maintain the bus voltage was recorded.

For request GEN-2010-044, the interconnecting wind farm was disabled at bus 580137 and a generator was placed at the high side bus (Bus 580134). The generator was modeled with  $P_{GEN} = 99$  MW,  $Q_{Min} = -9999$  Mvar, and  $Q_{Max} = 9999$  Mvar. All buses and transformers connected between bus 580134 and 580137 were disabled. The scheduled voltage for the POI (GEN-2010-047 Tap) was 1.0347 p.u. for summer peak and 1.0246 for winter peak conditions.

#### **Results**

The power factor was calculated for summer and winter peak conditions. Table 3-1 shows the power factor results for GEN-2010-044 (99 MW). Note that a positive Q (Mvar) output illustrates that the generator is absorbing reactive power from the system, implying a leading power factor; a negative Q (Mvar) illustrates that the generator is supplying reactive power to the system, implying a lagging power factor.





| Def  | Summer Peak |         |               | Winter Peak    |                |               |  |
|------|-------------|---------|---------------|----------------|----------------|---------------|--|
| No.  | Power       | Factor  | Q**<br>(MVAR) | Power Factor   |                | Q**<br>(MVAR) |  |
| Base | 0.9163      | Leading | 43.28         | 0.9417 Leading |                | 35.38         |  |
| 1    | 0.9161      | Leading | 43.34         | 0.9425         | Leading        | 35.10         |  |
| 3    | 0.9168      | Leading | 43.11         | 0.9456         | Leading        | 34.05         |  |
| 5    | 0.9181      | Leading | 42.75         | 0.9515         | Leading        | 32.02         |  |
| 7    | 0.9162      | Leading | 43.29         | 0.9438         | Leading        | 34.66         |  |
| 9    | 0.9187      | Leading | 42.55         | 0.9500         | Leading        | 32.53         |  |
| 10   | 0.9333      | Leading | 38.10         | 0.9520         | Leading        | 31.82         |  |
| 12   | 0.9098      | Leading | 45.15         | 0.9367         | Leading        | 37.00         |  |
| 14   | 0.9126      | Leading | 44.36         | 0.9471         | Leading        | 33.56         |  |
| 16   | 0.9297      | Leading | 39.21         | 0.9380         | Leading        | 36.57         |  |
| 18   | 0.9406      | Leading | 35.73         | 0.9642         | Leading        | 27.24         |  |
| 20   | 0.9383      | Leading | 36.50         | 0.9655         | Leading        | 26.70         |  |
| 22   | 0.9993      | Leading | 3.66          | 0.9968         | 0.9968 Leading |               |  |
| 24   | 0.9469      | Leading | 33.60         | 0.9467         | 0.9467 Leading |               |  |
| 26   | 0.9272      | Leading | 39.99         | 0.9482 Leading |                | 33.17         |  |
| 28   | 0.9285      | Leading | 39.58         | 0.9577 Leading |                | 29.74         |  |
| 30   | 0.9281      | Leading | 39.71         | 0.9766         | Leading        | 21.82         |  |

Table 3-1Power Factor Analysis - GEN-2010-044 (99 MW)\*

\*The scheduled voltage for the POI (GEN-2010-047 Tap) was 1.0347 p.u. for summer peak and 1.0246 p.u. for winter peak conditions

\*\*A positive Q (Mvar) output illustrates the generator is absorbing Mvars from the system, which implies a leading power factor; negative Q (Mvar) output shows the generator is supplying Mvars to the system implying a lagging power factor.

#### Summary

Power Factor Analysis shows that GEN-2010-044 has a power factor range of 0.9098 to 0.9993 leading (absorbing).

#### SECTION 4: STABILITY ANALYSIS

#### **Objective**

The objective of the stability analysis was to determine the impacts of the new wind farm at the GEN-2010-047 Tap point along the Harbine to Beatrice 115 kV line on the stability and voltage recovery of the nearby system. If problems with stability or voltage recovery were identified the need for reactive compensation or system upgrades were investigated.





#### **Approach**

Both winter peak and summer peak power flows provided by SPP were examined prior to the Stability Analysis to ensure they contained the proposed study project modeled at 100% of the nameplate rating and previously queued projects listed in Table 2-2. There was no suspect power flow data in the study area. The dynamic datasets were also verified and stable initial system conditions (i.e., "flat lines") were achieved. Three-phase and single line-to-ground faults listed in Table 2-3 were examined. Single-phase fault impedances were calculated to result in a voltage of approximately 60% of the pre-fault voltage. Refer to Table 4-1 for a list of the calculated single-phase fault impedances used for the analysis.

| Calculated Single-1 hase Fault Impedances |           |                                    |             |  |  |  |
|-------------------------------------------|-----------|------------------------------------|-------------|--|--|--|
| Ref.                                      | Casename  | Single-Phase Fault Impedance (MVA) |             |  |  |  |
| No.                                       |           | Summer Peak                        | Winter Peak |  |  |  |
| 2                                         | FLT02-1PH | -5000                              | -5000       |  |  |  |
| 4                                         | FLT04-1PH | -9750                              | -9500       |  |  |  |
| 6                                         | FLT06-1PH | -8000                              | -7500       |  |  |  |
| 8                                         | FLT08-1PH | -9750                              | -9500       |  |  |  |
| 11                                        | FLT11-1PH | -1000                              | -937.5      |  |  |  |
| 13                                        | FLT13-1PH | -687.5                             | -687.5      |  |  |  |
| 15                                        | FLT15-1PH | -687.5                             | -656.3      |  |  |  |
| 17                                        | FLT17-1PH | -687.5                             | -656.3      |  |  |  |
| 19                                        | FLT19-1PH | -1000                              | -937.5      |  |  |  |
| 21                                        | FLT21-1PH | -1000                              | -937.5      |  |  |  |
| 23                                        | FLT23-1PH | -1125                              | -1000       |  |  |  |
| 25                                        | FLT25-1PH | -1625                              | -1250       |  |  |  |
| 27                                        | FLT27-1PH | -1625                              | -1250       |  |  |  |
| 29                                        | FLT29-1PH | -1875                              | -1312.5     |  |  |  |

 Table 4-1

 Calculated Single-Phase Fault Impedances

Bus voltages and previously queued generation in the study area were monitored in addition to the bus voltages in the following areas:

- 531 MIDW
- 534 SUNC
- 536 WERE
- 540 MIPU
- 541 KACP
- 640 NPPD
- 645 OPPD





The results of the analysis determined if reactive compensation or system upgrades were required to obtain acceptable system performance. If additional reactive compensation was required, the size, type, and location were determined. The proposed reactive reinforcements would ensure the wind farm meets FERC Order 661A low voltage requirements and return the wind farm to its pre-disturbance operating voltage. If the results indicated the need for fast responding reactive support, dynamic support such as an SVC or STATCOM was investigated. If tripping of the prior queued projects was observed during the stability analysis (for under/over voltage or under/over frequency) the simulations were re-ran with the prior queued project's voltage and frequency tripping disabled. If stability problems were identified, the maximum acceptable generation level for the GEN-2010-044 to operate without causing any stability problems was quantified. Stability analysis results indicated that GEN-2010-044 can interconnect at 100% output for all contingencies.

#### **Results**

Refer to Table 4-2 for a summary of the Stability Analysis results. The initial simulations were run for summer and winter peak conditions and all contingencies remained stable. Figure 4-1 shows the response of the GEN-2010-044 generator during a three-phase fault on the GEN-2010-047 Tap to Beatrice 115 kV line (FLT22-3PH) during summer peak conditions. Figure 4-2 shows selected bus voltages in the study area during FLT22-3PH which is a representative case for the "worst" delayed voltage recovery and "most severe" voltage dip.



| Def         |           |         | Summer                  | Winter  |                         |  |
|-------------|-----------|---------|-------------------------|---------|-------------------------|--|
| Rel.<br>No. | Casename  | Stable? | Acceptable<br>Voltages? | Stable? | Acceptable<br>Voltages? |  |
| 1           | FLT01-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 2           | FLT02-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 3           | FLT03-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 4           | FLT04-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 5           | FLT05-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 6           | FLT06-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 7           | FLT07-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 8           | FLT08-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 9           | FLT09-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 10          | FLT10-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 11          | FLT11-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 12          | FLT12-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 13          | FLT13-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 14          | FLT14-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 15          | FLT15-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 16          | FLT16-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 17          | FLT17-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 18          | FLT18-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 19          | FLT19-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 20          | FLT20-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 21          | FLT21-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 22          | FLT22-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 23          | FLT23-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 24          | FLT24-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 25          | FLT25-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 26          | FLT26-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 27          | FLT27-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 28          | FLT28-3PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 29          | FLT29-1PH | Stable  | Yes                     | Stable  | Yes                     |  |
| 30          | FLT30-3PH | Stable  | Yes                     | Stable  | Yes                     |  |

Table 4-2Stability Analysis Summary of Results







Figure 4-1. Response of GEN-2010-044 project during case FLT22-3PH for summer peak conditions.





Figure 4-2. Response of selected area bus voltages for case FLT22-3PH for summer peak conditions.



#### <u>Summary</u>

The stability analysis determined that no wind generator tripping or system instability occurs by interconnecting the Group 13 project at 100% output. Refer to Appendix B and Appendix C for the stability plots of the study area and nearby system's bus voltage and generator's response during the disturbance for the summer peak and winter peak conditions, respectively.

#### **SECTION 5: CONCLUSIONS**

#### **Power Factor Analysis**

Power Factor Analysis shows that GEN-2010-044 has a power factor range of 0.9098 to 0.9993 leading (absorbing).

#### **Stability Analysis**

The Stability Analysis determined that no wind turbine tripping or system instability occurs from interconnecting GEN-2010-044 at 100% output.



Southwest Power Pool, Inc.

## V: Stability Study for Group 14

- No requests were located in the cluster group

Southwest Power Pool, Inc.

### W: Stability Study for Group 15

- No requests were located in the cluster group