GEN-2010-005 Impact Restudy for Generator Modification (Turbine Change)

March 2017 Generator Interconnection

Revision History

Date	Author	Change Description	
3/6/2017	SPP	GEN-2010-005 Impact Restudy for Generator Modification Report Issued	
3/30/2017	SPP	Clarify reactor requirement and moved a reactor analysis drawing from the appendix to the main body for better reference. State that the requested wind turbine change does not constitute a Material Modification. Short Circuit Analysis tables were revised.	

Executive Summary

The GEN-2010-005 Interconnection Customer has requested a modification to its Generator Interconnection Request to change wind turbine generators for its Phase II construction of the project. Originally, Phase I and Phase II consisted of one-hundred eighty-seven (187) GE 1.6MW wind turbines for a total 299.2 MW. The requested change is one hundred seven (107) GE 1.6MW wind turbines in Phase I which is in commercial operation and sixty-four (64) Vestas V110 2.0MW wind turbines in Phase II which is yet to be constructed. The total power remains at 299.2MW. The point of interconnection (POI) is the Westar Energy, Inc (WERE) Viola Substation 345kV.

The study models used were the 2016 winter, 2017 summer, and 2025 summer models that included Interconnection Requests through DISIS-2015-002.

Stability analysis has determined with all previously assigned Network Upgrades in service, generators in the monitored areas remained stable and within the pre-contingency, voltage recovery, and post fault voltage recovery criterion of 0.7pu to 1.2pu for the entire modeled disturbances. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

A power factor analysis for the project was performed on the current study 2016 winter peak, 2017 summer peak, and 2025 summer peak cases with identified system upgrades. As reactive power is required for GEN-2010-005, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the point of interconnection.

A reduced generation analysis was conducted to determine reactor inductive amounts to compensate the capacitive effects on the transmission system during low or reduced wind conditions caused by the interconnecting project's generator lead transmission line and collector systems. The interconnection customer's facility is required to install a reactor or an equivalent means of compensation that can inject approximately 7.6Mvar of inductive reactance. Reactive compensation devices are typically installed on the low side of the project's Phase II substation 345/34.5kV transformer.

Short Circuit analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases.

With the assumptions outlined in this report and with all the required network upgrades from the DISIS 2015-002 in place, GEN-2010-05 with the GE 1.6MW and Vestas V110 2.0MW wind turbine generators should be able to interconnect reliably to the SPP transmission grid. The change in wind turbine generator is not a Material Modification.

It should be noted that this study analyzed the requested modification to change generator technology, manufacturer, and layout. Powerflow analysis was not performed. This study analyzed many of the most probable contingencies, but it is not an all-inclusive list and cannot account for every operational situation. It is likely that the customer may be required to reduce its generation output to 0 MW, also known as curtailment, under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Nothing in this study should be construed as a guarantee of delivery or transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

Table of Contents

Revis	ion Histo	ory	1
Exec	utive Sun	mmary	i
Table	of Cont	tents	iii
1.	Introd	duction	1
2.	Faciliti	ties	4
3.	Stabili	ity Analysis	5
	Mod	odel Preparation	5
	Dist	turbances	5
	Resi	sults	16
	FER	RC LVRT Compliance	18
4.	Power	r Factor Analysis	19
	Mod	odel Preparation	19
	Dist	turbances	19
	Resi	sults	19
5.	Reduc	ced Wind Generation Analysis	20
6.	Short (Circuit Analysis	22
	Resi	sults	22
7.	Conclu	usion	23
Appe	ndix A	- 2016 Winter Peak Stability Plots	25
Appe	endix B	– 2017 Summer Peak Stability Plots	26
Appe	endix C	– 2025 Summer Peak Stability Plots	27
Appe	ndix D	– Power Factor Analysis Results	28
Appe	ndix E	- Reduced Wind Generation Analysis Results	30
Appe	ndix F	- Short Circuit Analysis Results	31

1. Introduction

The GEN-2010-005 Interconnection Customer has requested a modification to its Generator Interconnection Request to change its Phase II generators from GE 1.6 MW wind turbines to Vestas 2.0 MW wind turbines. Originally, Phase I and Phase II consisted of one-hundred eighty-seven (187) GE 1.6MW wind turbines for a total 299.2 MW. The requested change is shown in **Table 1-1**.

Table 1-1: Interconnection Request

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2010-005	299.2	107 x GE 1.6 (Phase I) = 171.2MW, and 64 x Vestas V110 2.0 (Phase II) = 128.0MW	Viola 345kV (532798)

The POI is the WERE Viola Substation 345kV. Other queued generation projects in the model are listed in **Table 1-2**.

Table 1-2: Other Queued Interconnection Requests in the Model

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2002-004	199.5	GE.1.5MW	Latham 345kV (532800)
GEN-2005-013	199.8	Vestas V90 1.8MW	Caney River 345kV (532780)
GEN-2007-025	299.2	GE 1.6MW	Viola 345kV (532798)
GEN-2008-013	300	G.E. 1.68MW	Hunter 345kV (515476)
GEN-2008-021	1261 Summer 1283 Winter	GENROU	Wolf Creek 345kV (532797)
GEN-2008-098	100.8	Vestas V100 1.8MW	Tap on the Wolf Creek – LaCygne 345kV line (560004)
GEN-2009-025	59.8	Siemens 2.3MW	Tap on the Deerck – Sincblk 69KV line (515528)
GEN-2010-003	100.8	Vestas V100 1.8MW	Tap on the Wolf Creek – LaCygne 345kV line (560004)
ASGI-2010-006	150	GE1.5MW	Remington 138kV (301369)
GEN-2010-055	4.8	GENROU	Wekiwa 138kV (509757)
GEN-2011-057	150.4	GE 1.6MW	Creswell 138kV (532981)
GEN-2012-027	150.7	GE 1.62MW	Shidler 138kV (510403)
KCPL Distributed: Osawatomie	76.0	GENROU (543078)	Paola 161kV
GEN-2012-032	300	Vestas V112 3.0MW	Tap Rose Hill-Sooner 345kV (562318)
GEN-2012-033	98.8	GE 1.62MW	Tap Bunch Creek-South 4th 138kV(562303)
GEN-2012-040	76.5	GE 1.7MW	Chilocco 138kV (521198)
GEN-2012-041	85 Summer 121.5 Winter	GENROU	Tap Rose Hill-Sooner 345kV (562318)
GEN-2013-012	4 x 168.0MW Summer 4 x 215MW Winter	GENROU (514910) (514911) (514912) (514942)	Redbud 345kV (514909)
GEN-2013-028	516.4 Summer 559.5 Winter	GENROU (583743, 583746)	Tap on Tulsa N to GRDA1 345kV (562423)
GEN-2013-029	300	Vestas V100 VCSS 2MW (583753, 583756)	Renfrow 345kV(515543)
GEN-2014-001	200.6	GE 1.7MW 100m (583853,583856)	Tap Wichita to Emporia Energy Center 345kV (562476)

Table 1-2: Other Queued Interconnection Requests in the Model

Request	Capacity (MW)	Generator Model	Point of Interconnection
GEN-2014-028	35 (Uprate) (Pgen=259W/256S)	GENROU	Riverton 161kV (547469)
GEN-2014-064	248.4	GE 2.3MW	Otter 138kV (514708)
ASGI-2014-014	56.4W/54.3S	GENROU	Ferguson 69kV (512664)
GEN-2015-001	200.0	Vestas V110 2.0MW	Ranch Road 345kV
GEN-2015-015	154.6	Siemens 2.3MW with Power Boost (115kW => 2.415MW)	Tap Medford Tap – Coyote 138kV
GEN-2015-016	200.0	Vestas V110 2.0MW	Tap Centerville – Marmaton 161kV
GEN-2015-024	220.0	GE 2.0MW	Tap on Thistle to Wichita 345kV, ckt1&2 (560033)
GEN-2015-025	220.0	GE 2.0MW	Tap on Thistle to Wichita 345kV, ckt1&2 (560033)
GEN-2015-028	3.0 uprate to GEN- 2009-025 for total 62.8MW	Siemens 2.3MW with Power Boost (115kW => 2.415MW)	Nardins 69kV
GEN-2015-030	200.1	GE 2.3MW	Sooner 345kV
ASGI-2015-004	54.300 Summer 56.364 Winter	GENSAL	Coffeyville Municipal Light & Power Northern Industrial Park Substation 69kV (512735)
GEN-2015-034	199.95	Vestas V126 GS 3.3MW & 3.45MW	Ranch Road 345kV (515576)
GEN-2015-047	300	Vestas V110-2MW (wind)	Sooner 345kV Tap (514803)
GEN-2015-052	300	Vestas V110-2MW (wind)	Tap on Opensky (515621) to RoseHill (532794) 345 kV (560053)
GEN-2015-062	4.5	G.E. 1.79MW (wind)	Breckenridge 138kV (514815)
GEN-2015-063	300	Vestas V110-2MW (wind)	Tap on Woodring (514715) to Matthewson (515497) 345 kV (560055)
GEN-2015-066	248	G.E. 2.3MW (wind)	Tap on Cleveland (512694) to Sooner (514803) 345 kV (560056)
GEN-2015-067	150	PV inverter user model (solar)	Sooner 138kV (514802)
GEN-2015-069	300	Vestas V110-2MW (wind)	Union Ridge 230kV (532874)
GEN-2015-073	200.1	Vestas V126 3.45MW (wind)	Emporia 345kV (532768)
GEN-02015-083	125	G.E. 2.3MW (wind)	Belle Plain 138kV (533063)
GEN-2015-090	220	G.E. 2MW (wind)	Wichita (532796)-Thistle (539801) 345kV Tap (GEN-2015- 024 (560033) 345kV)

A stability analysis was performed for the change in wind turbines. The analysis was performed on three (3) seasonal models including 2016 winter peak (16WP), the 2017 summer peak (17SP), and the 2025 summer peak (25SP) cases. These cases are modified versions of the 2015 model series of Model Development Working Group (MDWG) dynamic study models that included upgrades and Interconnection Requests through DISIS-2015-002.

The stability analysis determines the impacts of the new interconnecting project on the stability and voltage recovery of the nearby systems and the ability of the interconnecting project to meet FERC Order 661A. If problems with stability or voltage recovery are identified, the need for reactive compensation or system upgrades is investigated. The contingencies listed in **Table 3-1** were used in the stability analysis.

The power factor analysis determines the power factor at the point of interconnection (POI) for the wind interconnection projects for pre-contingency and post-contingency conditions. The contingencies used in the power factor analysis are a subset of the stability analysis contingencies shown in **Table 3-1**.

A reduced (low wind/no wind) generation analysis was performed to determine reactor inductive amounts to compensate for the capacitive effects on the transmission system caused by the interconnecting project's generator lead transmission line and collector systems during low or reduced wind conditions.

Short Circuit analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases. The results from the Short circuit analysis are shown in Appendix F.

Nothing in this System Impact Study constitutes a request for transmission service or grants the Interconnection Customer any rights to transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

2. Facilities

A one-line PSS/E slider drawing from the 16WP case is shown in **Figure 2-1** for GEN-2010-005. GEN-2007-025 has been included in the one-line because it is owned by the interconnection customer and GEN-2010-005 interconnects to the POI through GEN-2007-025. Phase II of GEN-2010-005 is shown in the red box in the one-line.

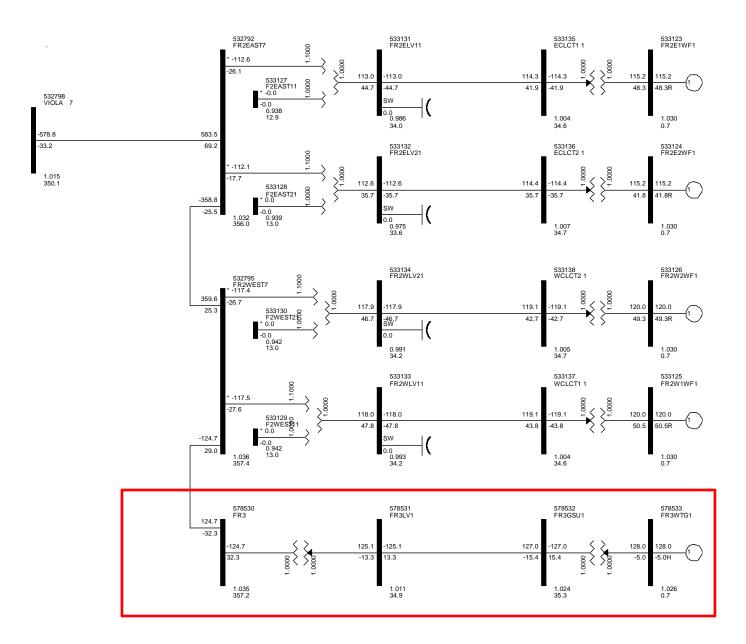


Figure 2-1: GEN-2010-005 (and GEN-2007-025) One-line Diagram

3. Stability Analysis

Transient stability analysis is used to determine if the transmission system can maintain angular stability and ensure bus voltages stay within planning criteria bandwidth during and after a disturbance while considering the addition of a generator interconnection request.

Model Preparation

Transient stability analysis was performed using modified versions of the 2015 series of Model Development Working Group (MDWG) dynamic study models including the 2016 winter peak, 2017 summer peak, and the 2025 summer peak seasonal models. The cases are then loaded with prior queued interconnection requests and network upgrades assigned to those interconnection requests. Finally other queued projects as shown in **Table 1-2** and the study generation are dispatched into the SPP footprint. Initial simulations are then carried out for a no-disturbance run of twenty (20) seconds to verify the numerical stability of the model.

Disturbances

Ninety (90) contingencies were identified for use in this study and are listed in **Table 3-1**. These contingencies are faults at locations defined by SPP Generation Interconnection Staff. These contingencies include three-phase and single-phase N-1. Single-phase line faults were simulated by applying fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP current practice.

Except for transformer faults, the typical sequence of events for a three-phase and single-phase fault is as follows:

- 1. apply fault at particular location
- 2. continue fault for five (5) cycles, clear the fault by tripping the faulted facility
- 3. after an additional twenty (20) cycles, re-close the previous facility back into the fault
- 4. continue fault for five (5) additional cycles
- 5. trip the faulted facility and remove the fault

Transformer faults are typically modeled as three-phase faults, unless otherwise noted. The sequence of events for a transformer fault is as follows:

- 1. apply fault for five (5) cycles
- 2. clear the fault by tripping the affected transformer facility (unless otherwise noted there will be no reclosing into a transformer fault)

The SPP areas monitored during the stability analysis were:

- 520: American Electric Power (AEPW)
- 524: Oklahoma Gas and Electric Company (OKGE)
- 525: Western Farmers Electric Cooperative (WFEC)
- 526: Southwestern Public Service (SPS)
- 531: Midwest Energy, Inc. (MIDW)

- 534: Sunflower Electric Power Corp. (SUNC)
- 536: Westar Energy, Inc. (WERE)
- 541: Kansas City Power and Light (KCPL)

Table 3-1: Contingencies Evaluated

Cont.	Contingency	Description
No.	Name	
0	FLT_000_NOFAULT	No Fault Conditions 3 phase fault on the Viola (532798) to Renfrow (515543) 345kV line,
		near Viola.
		a. Apply fault at the Viola 345kV bus.
1	FLT_01_Viola_Renfrow_345kV_3PH	b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on the Viola (532798) to Wichita (532796) 345kV line,
		near Viola.
2	FLT_02_Viola_Wichita_345kV_3PH	a. Apply fault at the Viola 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on the Renfrow (515543) to Hunter (515476) 345kV line,
		near Renfrow.
3	FLT_03_Renfrow_Hunter_345kV_3PH	a. Apply fault at the Renfrow 345kV bus.
3	FEI_05_RefillOW_Huffel_545KV_5FH	b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
	FLT_04_Renfrow_Renfrow_345_138kV_3PH	3 phase fault on the Renfrow 345kV (515543) to Renfrow 138kV (515544) to Renfrow 13.8kV (515545) transformer, near Renfrow
4		345kV.
4		a. Apply fault at the Renfrow 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted transformer.
		3 phase fault on the Hunter (515476) to Woodring (514715) 345kV
		line, near Hunter.
5	FLT_05_Hunter_Woodring_345kV_3PH	a. Apply fault at the Hunter 345kV bus.
	TEI_05_Huntel_vvoodring_5+5kv_5HH	b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on Woodring (514715) to Sooner (514803) 345kV line, near Woodring.
_		a. Apply fault at the Woodring 345kV bus.
6	FLT_06_Woodring_Sooner_345kV_3PH	b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on Woodring (514715) to G1506Tap (560055) 345kV line,
		near Woodring.
7	FLT_07_Woodring_G15063Tap_345kV_3PH	a. Apply fault at the Woodring 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on the Woodring 345kV (514715) to Woodring 138kV
8		(514714) to Woodring 13.8kV (515770) transformer, near
	FLT_08_Woodring_Woodring_345_138kV_3PH	Woodring 345kV.
		a. Apply fault at the Woodring 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted transformer.
		3 phase fault on the Mathewson (515497) to Northwest (514880)
		345kV line, near Mathewson.
9	FLT_09_Mathewson_Northwest_345kV_3PH	a. Apply fault at the Mathewson 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
	<u> </u>	a. zeare main on for 5 cycles, then the the line in (b) and remove fault.

Table 3-1: Contingencies Evaluated

Cont.	Contingency	
No.	Name	Description
		3 phase fault on the Mathewson (515497) to Cimarron (514901) 345kV line, near Mathewson. a. Apply fault at the Mathewson 345kV bus.
10	FLT_10_Mathewson_Cimarron_345kV_3PH	b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on the Mathewson (515497) to Tatonga (515407) 345kV
		line, near Mathewson.
11	FLT 11 Mathewson Tatonga 345kV 3PH	a. Apply fault at the Mathewson 345kV bus.
11	FEI_II_Mathewson_ratonga_343kV_3FII	b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on the Sooner (514803) to Spring Creek (514881) 345kV
		line, near Sooner.
12	FLT_12_Sooner_SpringCreek_345kV_3PH	a. Apply fault at the Sooner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on the Sooner (514803) to G15066T (560056) 345kV line,
		near Sooner.
13	ELT 12 Sooner C1EOCCT 24EW/ 2DH	a. Apply fault at the Sooner 345kV bus.
13	FLT_13_Sooner_G15066T_345kV_3PH	b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on the Sooner 345kV (514803) to Sooner 138kV (514802)
14	FLT_14_Sooner_Sooner_345_138kV_3PH	to Sooner 13.8kV (515760) transformer, near Sooner 345kV.
		a. Apply fault at the Sooner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
		3 phase fault on the Ranch Road (515576) to Sooner (514803) 345kV
		line, near Ranch Road.
		a. Apply fault at the Ranch Road 345kV bus.
15	FLT_15_RanchRoad_Sooner_345kV_3PH	b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on the Ranch Road (515576) to Open Sky (515621) 345kV
		line, near Ranch Road.
16	FLT_16_RanchRoad_OpenSky_345kV_3PH	a. Apply fault at the Ranch Road 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on the Rosehill (532794) to Benton (532791) 345kV line,
		near Rosehill.
4-	FIT 47 Perskill Persky 2451V 25V	a. Apply fault at the Rosehill 345kV bus.
17	FLT_17_Rosehill_Benton_345kV_3PH	b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
		3 phase fault on the Rosehill (532794) to Wolf Creek (532797) 345kV
		line, near Rosehill.
18	FLT_18_Rosehill_WolfCreek_345kV_3PH	a. Apply fault at the Rosehill 345kV bus.
		b. Clear fault after 5 cycles by tripping the faulted line.
		c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
		d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-1: Contingencies Evaluated

Cont.	Contingency	- · · ·
No.	Name	Description
19	FLT_19_Rosehill_Latham_345kV_3PH	 3 phase fault on the Rosehill (532794) to Latham (532800) 345kV line, near Rosehill. a. Apply fault at the Rosehill 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
20	FLT_20_Rosehill_G15052T_345kV_3PH	3 phase fault on the Rosehill (532794) to G15052T (560053) 345kV line, near Rosehill. a. Apply fault at the Rosehill 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
21	FLT_21_Rosehill_Rosehill_345_138kV_3PH	3 phase fault on the Rosehill 345kV (532794) to Rosehill 138kV (533062) to Rosehill 13.8kV (532831) transformer, near Rosehill 345kV. a. Apply fault at the Rosehill 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
22	FLT_22_Northwest_SpringCreek_345kV_3PH	3 phase fault on the Northwest (514880) to Spring Creek (514881) 345kV line, near Northwest. a. Apply fault at the Northwest 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
23	FLT_23_Northwest_Cimarron_345kV_3PH	3 phase fault on the Northwest (514880) to Cimarron (514901) 345kV line, near Northwest. a. Apply fault at the Northwest 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
24	FLT_24_Northwest_Arcadia_345kV_3PH	3 phase fault on the Northwest (514880) to Arcadia (514908) 345kV line, near Northwest. a. Apply fault at the Northwest 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
25	FLT_25_Northwest_Northwest_345_138kV_3PH	3 phase fault on the Northwest 345kV (514880) to Northwest 138kV (514879) to Northwest 13.8kV (515742) transformer, near Northwest 345kV. a. Apply fault at the Northwest 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
26	FLT_26_Benton_WolfCreek_345kV_3PH	3 phase fault on the Benton (532791) to Wolf Creek (532796) 345kV line, near Benton. a. Apply fault at the Benton 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
27	FLT_27_Benton_Benton_345_138kV_3PH	3 phase fault on the Benton 345kV (532791) to Benton 138kV (532986) to Benton 13.8kV (532821) transformer, near Benton 345kV. a. Apply fault at the Benton 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
28	FLT_28_Wichita_Reno_345kV_3PH	 3 phase fault on the Wichita (532796) to Reno (532771) 345kV line, near Wichita. a. Apply fault at the Wichita 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-1: Contingencies Evaluated

Cont. No.	Contingency Name	Description
29	FLT_29_Wichita_Benton_345kV_3PH	 3 phase fault on the Wichita (532796) to Benton (532791) 345kV line, near Wichita. a. Apply fault at the Wichita 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
30	FLT_30_Wichita_G1524&1525T_345kV_3PH	3 phase fault on the Wichita (532796) to G1525&G1525T (560033) 345kV line, near Wichita. a. Apply fault at the Wichita 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
31	FLT_31_Wichita_Evans_345_138kV_3PH	3 phase fault on the Wichita 345kV (532796) to Evans 138kV (533040) to Evans 13.8kV (532830) transformer, near Wichita 345kV. a. Apply fault at the Wichita 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
32	FLT_32_Thistle_G1524&1525T_345kV_3PH	3 phase fault on the Thistle (539801) to G1524&G1525T (560033) 345kV line, near Thistle. a. Apply fault at the Thistle 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
33	FLT_33_Thistle_Woodward_345kV_3PH	3 phase fault on the Thistle (539801) to Woodward (515375) 345kV line, near Thistle. a. Apply fault at the Thistle 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
34	FLT_34_Thistle_ClarkCounty_345kV_3PH	3 phase fault on the Thistle (539801) to Clark County (539800) 345kV line, near Thistle. a. Apply fault at the Thistle 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
35	FLT_35_Thistle_Thistle_345_138kV_3PH	3 phase fault on the Thistle 345kV (539801) to Thistle 138kV (539804) to Thistle 13.8kV (539802) transformer, near Thistle 345kV. a. Apply fault at the Thistle 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
36	FLT_36_Reno_Summit_345kV_3PH	3 phase fault on the Reno (532771) to Summit (532773) 345kV line, near Reno. a. Apply fault at the Reno 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
37	FLT_37_Reno_Reno_345_115kV_3PH	3 phase fault on the Reno 345kV (532771) to Reno 138kV (533416) to Reno 14.4kV (532807) transformer, near Reno 345kV. a. Apply fault at the Reno 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
38	FLT_38_Summit_Blustem_345kV_3PH	3 phase fault on the Summit (532773) to Blustem (532767) 345kV line, near Summit. a. Apply fault at the Summit 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-1: Contingencies Evaluated

Cont.	Contingency	
No.	Name	Description
39	FLT_39_Summit_ElmCreek_345kV_3PH	3 phase fault on the Summit (532773) to Elm Creek (539805) 345kV line, near Summit. a. Apply fault at the Summit 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
40	FLT_40_Summit_Summit_345_230kV_3PH	3 phase fault on the Summit 345kV (532773) to Summit 230kV (532873) to Summit 14.4kV (432813) transformer, near Summit 345kV. a. Apply fault at the Summit 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
41	FLT_41_EMPEC_Lang_345kV_3PH	 3 phase fault on the EMPEC (532768) to Lang (532769) 345kV line, near EMPEC. a. Apply fault at the EMPEC 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
42	FLT_42_EMPEC_Morris_345kV_3PH	3 phase fault on the EMPEC (532768) to Morris (532770) 345kV line, near EMPEC. a. Apply fault at the EMPEC 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
43	FLT_43_EMPEC_Swissvale_345kV_3PH	3 phase fault on the EMPEC (532768) to Swissvale (532774) 345kV line, near EMPEC. a. Apply fault at the EMPEC 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
44	FLT_44_EMPEC_G14001Tap_345kV_3PH	3 phase fault on the EMPEC (532768) to G14001Tap (562476) 345kV line, near EMPEC. a. Apply fault at the EMPEC 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
45	FLT_45_Morris_JECN_345kV_3PH	 3 phase fault on the Morris (532770) to JECN (532766) 345kV line, near Morris. a. Apply fault at the Morris 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
46	FLT_46_Morris_Morris_345_230kV_3PH	3 phase fault on the Morris 345kV (532770) to Morris 230kV (532863) to Morris 14.4kV (532809) transformer, near Morris 345kV. a. Apply fault at the Morris 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
47	FLT_47_Swissvale_Wgardner_345kV_3PH (2016WP & 2017SP)	3 phase fault on the Swissvale (532774) to WGardner (542965) 345kV line, near Swissvale. a. Apply fault at the Swissvale 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
48	FLT_47_Swissvale_Douglas_345kV_3PH (2025SP)	3 phase fault on the Swissvale (532774) to Douglas (532776) 345kV line, near Swissvale. a. Apply fault at the Swissvale 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-1: Contingencies Evaluated

Cont.	Contingency	Description
No.	Name	
49	FLT_48_Swissvale_Swissvale_345_230kV_3PH	3 phase fault on the Swissvale 345kV (532774) to Swissvale 230kV (532856) to Swissvale 14.4kV (532815) transformer, near Swissvale 345kV. a. Apply fault at the Swissvale 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
50	FLT_49_Wgardner_Stillwell_345kV_3PH	3 phase fault on the WGardner (542965) to Stillwell (542968) 345kV line, near WGardner. a. Apply fault at the WGardner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
51	FLT_50_Wgardner_Craig_345kV_3PH	3 phase fault on the WGardner (542965) to Craig (542977) 345kV line, near WGardner. a. Apply fault at the WGardner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
52	FLT_51_Wgardner_Lacygne_345kV_3PH	3 phase fault on the WGardner (542965) to LaCygne (542981) 345kV line, near WGardner. a. Apply fault at the WGardner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
53	FLT_52_Wgardner_Wgardner_345_161kV_3PH	3 phase fault on the WGardner 345kV (532774) to WGardner 161kV (542966) to WGardner 14.4kV (543649) transformer, near WGardner 345kV. a. Apply fault at the WGardner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
54	FLT_53_Stillwell_Peculiar_345kV_3PH	3 phase fault on the Stillwell (542968) to Peculiar (541198) 345kV line, near Stillwell. a. Apply fault at the Stillwell 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
55	FLT_54_Stillwell_Lacygne_345kV_3PH	3 phase fault on the Stillwell (542968) to LaCygne (542981) 345kV line, near Stillwell. a. Apply fault at the Stillwell 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
56	FLT_55_Stillwell_Stillwell_345_161kV_3PH	3 phase fault on the Stillwell 345kV (542968) to Stillwell 161kV (542969) to Stillwell 14.4kV (543648) transformer, near Stillwell 345kV. a. Apply fault at the Stillwell 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.
57	FLT_56_Craig_87th_345kV_3PH	3 phase fault on the Craig (542977) to 87th (532775) 345kV line, near Craig. a. Apply fault at the Craig 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
58	FLT_57_Craig_Craig_345_161kV_3PH	3 phase fault on the Craig 345kV (542977) to Craig 161kV (542978) to Craig 14.4kV (543641) transformer, near Craig 345kV. a. Apply fault at the Craig 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer.

Table 3-1: Contingencies Evaluated

Cont.	Contingency	Description
No. 59	Name FLT_58_Lacygne_Neosho_345kV_3PH	3 phase fault on the Lacygne (542981) to Neosho (532793) 345kV line, near Lacygne. a. Apply fault at the Lacygne 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
60	FLT_59_Lacygne_Waverly_345kV_3PH	 3 phase fault on the Lacygne (542981) to Waverly (532799) 345kV line, near Lacygne. a. Apply fault at the Lacygne 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
61	FLT_60_Neosho_Blackberry_345kV_3PH	 3 phase fault on the Neosho (532793) to Blackberry (300739) 345kV line, near Neosho. a. Apply fault at the Neosho 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
62	FLT_61_Neosho_Delaware_345kV_3PH	3 phase fault on the Neosho (532793) to Delaware (510380) 345kV line, near Neosho. a. Apply fault at the Neosho 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
63	FLT_62_Neosho_CaneyCreek_345kV_3PH	 3 phase fault on the Neosho (532793) to Caney Creek (532780) 345kV line, near Neosho. a. Apply fault at the Neosho 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
64	FLT_63_Viola_Renfrow_345kV_1PH	Single phase fault on the Viola (532798) to Renfrow (515543) 345kV line, near Viola. a. Apply fault at the Viola 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
65	FLT_64_Viola_Wichita_345kV_1PH	Single phase fault on the Viola (532798) to Wichita (532796) 345kV line, near Viola. a. Apply fault at the Viola 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
66	FLT_65_Renfrow_Hunter_345kV_1PH	Single phase fault on the Renfrow (515543) to Hunter (515476) 345kV line, near Renfrow. a. Apply fault at the Renfrow 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
67	FLT_66_Hunter_Woodring_345kV_1PH	Single phase fault on the Hunter (515476) to Woodring (514715) 345kV line, near Hunter. a. Apply fault at the Hunter 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-1: Contingencies Evaluated

Cont.	Contingency	
No.	Name	Description
68	FLT_67_Woodring_Sooner_345kV_1PH	Single phase fault on Woodring (514715) to Sooner (514803) 345kV line, near Woodring. a. Apply fault at the Woodring 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
69	FLT_68_Woodring_G15063Tap_345kV_1PH	Single phase fault on Woodring (514715) to G1506Tap (560055) 345kV line, near Woodring. a. Apply fault at the Woodring 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
70	FLT_69_Sooner_SpringCreek_345kV_1PH	Single phase fault on the Sooner (514803) to Spring Creek (514881) 345kV line, near Sooner. a. Apply fault at the Sooner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
71	FLT_70_Sooner_G15066T_345kV_1PH	Single phase fault on the Sooner (514803) to G15066T (560056) 345kV line, near Sooner. a. Apply fault at the Sooner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
72	FLT_71_RanchRoad_Sooner_345kV_1PH	Single phase fault on the Ranch Road (515576) to Sooner (514803) 345kV line, near Ranch Road. a. Apply fault at the Ranch Road 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
73	FLT_72_RanchRoad_OpenSky_345kV_1PH	Single phase fault on the Ranch Road (515576) to Open Sky (515621) 345kV line, near Ranch Road. a. Apply fault at the Ranch Road 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
74	FLT_73_Rosehill_Benton_345kV_1PH	Single phase fault on the Rosehill (532794) to Benton (532791) 345kV line, near Rosehill. a. Apply fault at the Rosehill 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
75	FLT_74_Rosehill_WolfCreek_345kV_1PH	Single phase fault on the Rosehill (532794) to Wolf Creek (532797) 345kV line, near Rosehill. a. Apply fault at the Rosehill 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
76	FLT_75_Rosehill_Latham_345kV_1PH	Single phase fault on the Rosehill (532794) to Latham (532800) 345kV line, near Rosehill. a. Apply fault at the Rosehill 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-1: Contingencies Evaluated

Cont.	Contingency	
No.	Name	Description
77	FLT_76_Rosehill_G15052T_345kV_1PH	Single phase fault on the Rosehill (532794) to G15052T (560053) 345kV line, near Rosehill. a. Apply fault at the Rosehill 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
78	FLT_77_Wichita_Reno_345kV_1PH	Single phase fault on the Wichita (532796) to Reno (532771) 345kV line, near Wichita. a. Apply fault at the Wichita 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
79	FLT_78_Wichita_Benton_345kV_1PH	Single phase fault on the Wichita (532796) to Benton (532791) 345kV line, near Wichita. a. Apply fault at the Wichita 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
80	FLT_79_Wichita_G1524_1525T_345kV_1PH	Single phase fault on the Wichita (532796) to G1525&G1525T (560033) 345kV line, near Wichita. a. Apply fault at the Wichita 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
81	FLT_80_EMPEC_Lang_345kV_1PH	Single phase fault on the EMPEC (532768) to Lang (532769) 345kV line, near EMPEC. a. Apply fault at the EMPEC 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
82	FLT_81_EMPEC_Morris_345kV_1PH	Single phase fault on the EMPEC (532768) to Morris (532770) 345kV line, near EMPEC. a. Apply fault at the EMPEC 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
83	FLT_82_EMPEC_Swissvale_345kV_1PH	Single phase fault on the EMPEC (532768) to Swissvale (532774) 345kV line, near EMPEC. a. Apply fault at the EMPEC 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
84	FLT_83_EMPEC_G14001Tap_345kV_1PH	Single phase fault on the EMPEC (532768) to G14001Tap (562476) 345kV line, near EMPEC. a. Apply fault at the EMPEC 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
85	FLT_84_Morris_JECN_345kV_1PH	Single phase fault on the Morris (532770) to JECN (532766) 345kV line, near Morris. a. Apply fault at the Morris 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-1: Contingencies Evaluated

Cont. No.	Contingency Name	Description
86	FLT_85_Wgardner_Stillwell_345kV_1PH	Single phase fault on the WGardner (542965) to Stillwell (542968) 345kV line, near WGardner. a. Apply fault at the WGardner 345kV bus.
00	72,_55_ 118 araner_5till#en_515kV_1111	b. Clear fault after 5 cycles by tripping the faulted line.c. Wait 20 cycles, and then re-close the line in (b) back into the fault.d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
87	FLT_86_Wgardner_Craig_345kV_1PH	Single phase fault on the WGardner (542965) to Craig (542977) 345kV line, near WGardner. a. Apply fault at the WGardner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
88	FLT_87_Wgardner_Lacygne_345kV_1PH	Single phase fault on the WGardner (542965) to LaCygne (542981) 345kV line, near WGardner. a. Apply fault at the WGardner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
89	FLT_88A_Wgardner_Swissvale_345kV_1PH (2016WP& 2017SP)	3 phase fault on the WGardner (542965) to Swissvale (532774) 345kV line, near WGardner. a. Apply fault at the WGardner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
90	FLT_88_Wgardner_Douglas_345kV_1PH (2025SP)	3 phase fault on the WGardner (542965) to Douglas (532776) 345kV line, near WGardner. a. Apply fault at the WGardner 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Results

The stability analysis was performed and the results are summarized in **Table 3-2.** The stability plots will be available upon customer request.

Table 3-2: Summary of Results

	Contingency Number and Name	2016WP	2017SP	2025SP
0	FLT_000_NOFAULT	STABLE	STABLE	STABLE
1	FLT_01_Viola_Renfrow_345kV_3PH	STABLE	STABLE	STABLE
2	FLT_02_Viola_Wichita_345kV_3PH	STABLE	STABLE	STABLE
3	FLT_03_Renfrow_Hunter_345kV_3PH	STABLE	STABLE	STABLE
4	FLT_04_Renfrow_Renfrow_345_138kV_3PH	STABLE	STABLE	STABLE
5	FLT_05_Hunter_Woodring_345kV_3PH	STABLE	STABLE	STABLE
6	FLT_06_Woodring_Sooner_345kV_3PH	STABLE	STABLE	STABLE
7	FLT_07_Woodring_G15063Tap_345kV_3PH	STABLE	STABLE	STABLE
8	FLT_08_Woodring_Woodring_345_138kV_3PH	STABLE	STABLE	STABLE
9	FLT_09_Mathewson_Northwest_345kV_3PH	STABLE	STABLE	STABLE
10	FLT_10_Mathewson_Cimarron_345kV_3PH	STABLE	STABLE	STABLE
11	FLT_11_Mathewson_Tatonga_345kV_3PH	STABLE	STABLE	STABLE
12	FLT_12_Sooner_SpringCreek_345kV_3PH	STABLE	STABLE	STABLE
13	FLT_13_Sooner_G15066T_345kV_3PH	STABLE	STABLE	STABLE

Table 3-2: Summary of Results

,						
	Contingency Number and Name	2016WP	2017SP	2025SP		
14	FLT_14_Sooner_Sooner_345_138kV_3PH	STABLE	STABLE	STABLE		
15	FLT_15_RanchRoad_Sooner_345kV_3PH	STABLE	STABLE	STABLE		
16	FLT_16_RanchRoad_OpenSky_345kV_3PH	STABLE	STABLE	STABLE		
17	FLT_17_Rosehill_Benton_345kV_3PH	STABLE	STABLE	STABLE		
18	FLT_18_Rosehill_WolfCreek_345kV_3PH	STABLE	STABLE	STABLE		
19 20	FLT_19_Rosehill_Latham_345kV_3PH FLT_20_Rosehill_G15052T_345kV_3PH	STABLE STABLE	STABLE STABLE	STABLE STABLE		
21	FLT 21 Rosehill Rosehill 345 138kV 3PH	STABLE	STABLE	STABLE		
22	FLT_22_Northwest_SpringCreek_345kV_3PH	STABLE	STABLE	STABLE		
23	FLT 23 Northwest Cimarron 345kV 3PH	STABLE	STABLE	STABLE		
24	FLT_24_Northwest_Arcadia_345kV_3PH	STABLE	STABLE	STABLE		
25	FLT_25_Northwest_Northwest_345_138kV_3PH	STABLE	STABLE	STABLE		
26	FLT_26_Benton_WolfCreek_345kV_3PH	STABLE	STABLE	STABLE		
27	FLT_27_Benton_Benton_345_138kV_3PH	STABLE	STABLE	STABLE		
28	FLT_28_Wichita_Reno_345kV_3PH	STABLE	STABLE	STABLE		
29	FLT_29_Wichita_Benton_345kV_3PH	STABLE	STABLE	STABLE		
30	FLT_30_Wichita_G1524&1525T_345kV_3PH	STABLE	STABLE	STABLE		
31	FLT_31_Wichita_Evans_345_138kV_3PH	STABLE	STABLE	STABLE		
32	FLT_32_Thistle_G1524&1525T_345kV_3PH	STABLE	STABLE	STABLE		
33	FLT_33_Thistle_Woodward_345kV_3PH FLT_34_Thistle_ClarkCounty_345kV_3PH	STABLE STABLE	STABLE STABLE	STABLE STABLE		
35	FLT 35 Thistle Thistle 345 138kV 3PH	STABLE	STABLE	STABLE		
36	FLT 36 Reno Summit 345kV 3PH	STABLE	STABLE	STABLE		
37	FLT_37_Reno_Reno_345_115kV_3PH	STABLE	STABLE	STABLE		
38	FLT 38 Summit Blustem 345kV 3PH	STABLE	STABLE	STABLE		
39	FLT_39_Summit_ElmCreek_345kV_3PH	STABLE	STABLE	STABLE		
40	FLT_40_Summit_Summit_345_230kV_3PH	STABLE	STABLE	STABLE		
41	FLT_41_EMPEC_Lang_345kV_3PH	STABLE	STABLE	STABLE		
42	FLT_42_EMPEC_Morris_345kV_3PH	STABLE	STABLE	STABLE		
43	FLT_43_EMPEC_Swissvale_345kV_3PH	STABLE	STABLE	STABLE		
44	FLT_44_EMPEC_G14001Tap_345kV_3PH	STABLE	STABLE	STABLE		
45	FLT_45_Morris_JECN_345kV_3PH	STABLE	STABLE	STABLE		
46	FLT_46_Morris_Morris_345_230kV_3PH	STABLE	STABLE	STABLE		
47	FLT_47_Swissvale_Wgardner_345kV_3PH (2016WP & 2017SP)	STABLE	STABLE	STABLE		
48	FLT_47_Swissvale_Douglas_345kV_3PH (2025SP)	STABLE	STABLE	STABLE		
49	FLT_48_Swissvale_Swissvale_345_230kV_3PH	STABLE	STABLE	STABLE		
50	FLT_49_Wgardner_Stillwell_345kV_3PH	STABLE	STABLE	STABLE		
51	FLT_50_Wgardner_Craig_345kV_3PH	STABLE	STABLE	STABLE		
52	FLT_51_Wgardner_Lacygne_345kV_3PH	STABLE	STABLE	STABLE		
53	FLT_52_Wgardner_Wgardner_345_161kV_3PH	STABLE	STABLE	STABLE		
54	FLT_53_Stillwell_Peculiar_345kV_3PH	STABLE	STABLE	STABLE		
55	FLT_54_Stillwell_Lacygne_345kV_3PH	STABLE	STABLE	STABLE		
56	FLT 55 Stillwell Stillwell 345 161kV 3PH	STABLE	STABLE	STABLE		
57	FLT 56 Craig 87th 345kV 3PH	STABLE	STABLE	STABLE		
58	FLT_57_Craig_Craig_345_161kV_3PH	STABLE	STABLE	STABLE		
59	FLT_58_Lacygne_Neosho_345kV_3PH	STABLE	STABLE	STABLE		
60	FLT_59_Lacygne_Waverly_345kV_3PH	STABLE	STABLE	STABLE		
61	FLT 60 Neosho Blackberry 345kV 3PH	STABLE	STABLE	STABLE		
62	FLT 61 Neosho Delaware 345kV 3PH	STABLE	STABLE	STABLE		
63	FLT_62_Neosho_CaneyCreek_345kV_3PH	STABLE	STABLE	STABLE		
64	FLT 63 Viola Renfrow 345kV 1PH	STABLE	STABLE	STABLE		
-						
65	FLT_64_Viola_Wichita_345kV_1PH	STABLE	STABLE	STABLE		
66	FLT_65_Renfrow_Hunter_345kV_1PH	STABLE	STABLE	STABLE		
67	FLT_66_Hunter_Woodring_345kV_1PH	STABLE	STABLE	STABLE		
68	FLT_67_Woodring_Sooner_345kV_1PH	STABLE	STABLE	STABLE		
69	FLT_68_Woodring_G15063Tap_345kV_1PH	STABLE	STABLE	STABLE		
70	FLT_69_Sooner_SpringCreek_345kV_1PH	STABLE	STABLE	STABLE		

Table 3-2: Summary of Results

	Contingency Number and Name	2016WP	2017SP	2025SP
71	FLT_70_Sooner_G15066T_345kV_1PH	STABLE	STABLE	STABLE
72	FLT_71_RanchRoad_Sooner_345kV_1PH	STABLE	STABLE	STABLE
73	FLT_72_RanchRoad_OpenSky_345kV_1PH	STABLE	STABLE	STABLE
74	FLT_73_Rosehill_Benton_345kV_1PH	STABLE	STABLE	STABLE
75	FLT_74_Rosehill_WolfCreek_345kV_1PH	STABLE	STABLE	STABLE
76	FLT_75_Rosehill_Latham_345kV_1PH	STABLE	STABLE	STABLE
77	FLT_76_Rosehill_G15052T_345kV_1PH	STABLE	STABLE	STABLE
78	FLT_77_Wichita_Reno_345kV_1PH	STABLE	STABLE	STABLE
79	FLT_78_Wichita_Benton_345kV_1PH	STABLE	STABLE	STABLE
80	FLT_79_Wichita_G1524_1525T_345kV_1PH	STABLE	STABLE	STABLE
81	FLT_80_EMPEC_Lang_345kV_1PH	STABLE	STABLE	STABLE
82	FLT_81_EMPEC_Morris_345kV_1PH	STABLE	STABLE	STABLE
83	FLT_82_EMPEC_Swissvale_345kV_1PH	STABLE	STABLE	STABLE
84	FLT_83_EMPEC_G14001Tap_345kV_1PH	STABLE	STABLE	STABLE
85	FLT_84_Morris_JECN_345kV_1PH	STABLE	STABLE	STABLE
86	FLT_85_Wgardner_Stillwell_345kV_1PH	STABLE	STABLE	STABLE
87	FLT_86_Wgardner_Craig_345kV_1PH	STABLE	STABLE	STABLE
88	FLT_87_Wgardner_Lacygne_345kV_1PH	STABLE	STABLE	STABLE
89	FLT_88A_Wgardner_Swissvale_345kV_1PH (2016WP& 2017SP)	STABLE	STABLE	STABLE
90	FLT_88_Wgardner_Douglas_345kV_1PH (2025SP)	STABLE	STABLE	STABLE

FERC LVRT Compliance

FERC Order 661A places specific requirements on wind farms through its Low Voltage Ride Through (LVRT) provisions. For Interconnection Agreements signed after December 31, 2006, wind farms shall stay on line for faults at the POI that draw the voltage down at the POI to 0.0 pu. The faults listed below in **Table 3-3** were tested to meet Order 661A LVRT provisions. GEN-2010-005 was found to be in compliance with FERC Order 661A.

Table 3-3 LVRT Contingencies

Contingency Number and Name	Description
	3 phase fault on the Viola (532798) to Renfrow (515543) 345kV line, near Viola.
	a. Apply fault at the Viola 345kV bus.
FLT_01_Viola_Renfrow_345kV_3PH	b. Clear fault after 5 cycles by tripping the faulted line.
	c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
	d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
	3 phase fault on the Viola (532798) to Wichita (532796) 345kV line, near Viola.
	a. Apply fault at the Viola 345kV bus.
FLT_02_Viola_Wichita_345kV_3PH	b. Clear fault after 5 cycles by tripping the faulted line.
	c. Wait 20 cycles, and then re-close the line in (b) back into the fault.
	d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

4. Power Factor Analysis

The power factor analysis was performed for each project included in this study and is designed to demonstrate the reactive power requirements at the point of interconnection (POI) using the current study upgrade cases. For all projects that require reactive power, the final requirement in the GIA will be the proforma 95% lagging to 95% leading at the POI.

Model Preparation

The study project as well as other projects modeled at the same POI was turned off for the power factor analysis. The projects were replaced by an equivalent generator located at the POI producing the total MW of the project at that POI and 0.0 Mvar capability.

A Mvar generator without limits was modeled at the interconnection project POI to hold a voltage schedule at the POI consistent with the greater of the voltage schedule in the base case or unity (1.0 pu) voltage.

Disturbances

Each N-1 contingency evaluated in the Stability Analysis found in **Table 3-1** was also included in the determination of the power factor requirements.

Results

The power factor ranges are summarized in **Table 4-1** and the resultant ranges are shown **Table D-1** located in Appendix D. The analysis showed that reactive power is required for the study project, the final requirement in the Generation Interconnection Agreement (GIA) for each project will be the pro-forma 95% lagging to 95% leading at the POI.

For analyzing power factor results a positive Q (Mvar) output indicates that the equivalent generator is supplying reactive power to the system, implying a lagging power factor. A negative Q (Mvar) output indicates that the equivalent generator is absorbing reactive power from the system, implying a leading power factor.

Leading Lagging Capacity Request Point of Interconnection (POI) Fuel Generator (absorbing (providing (MW) Mvars) Mvars) GE 1.6 and Vestas GEN-2010-005 299.2 Viola 345kV (532798) Wind 0.95 0.95 V110 2.0

Table 4-1: Summary of Power Factor Analysis at the POI

NOTE: As reactive power is required for the project, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the point of interconnection.

5. Reduced Wind Generation Analysis

A low wind analysis was performed for GEN-2015-005. GEN-2007-025 was included since both are owned by the same interconnection customer, and GEN-2010-005 interconnects to the POI through GEN-2007-025 via a 345kV transmission lead. SPP performed this low wind analysis to determine the capacitive reactive power injected at the POI.

The study generator and capacitors (if any) were turned off in the base case. **Figure 5-1** shows the resulting reactive power injection (approximately 59Mvar) at the POI that is due to the capacitance of the projects' transmission lines and collector cables. Also, the figure shows how the capacitance is distributed throughout the projects. In this impact restudy GEN-2010-005 is responsible for a 7.6Mvar reactor needed to offset the capacitive effects of the Phase II collector system (4.1Mvar) and of the transmission lead (3.5Mvar) that connects the Phase II 345/34.5kV transformer to the Phase I 345/34.5kV transformer. The interconnection customer's facility is required to install a reactor or an equivalent means of compensation that can inject approximately 7.6Mvar of inductive reactance. Reactive compensation devices are typically installed on the low side of the project's Phase II substation 345/34.5kV transformer.

A shunt reactor was added at the GEN-2007-025 project substation 345 kV bus to bring the Mvar flow into the POI down to approximately zero as shown in **Figure E-1** located in Appendix E. A reactor of approximately 56 Mvar will negate the capacitive effect of both projects at the POI. **This is shown for information only and not as a requirement**.

B=5.5 Mvar 533131 FR2ELV11 533123 FR2E1WF1 B=20.6 Mvar 532798 VIOLA 7 0.939 32.4 -0.3 B=7.0 Mvar 37.7 533124 FR2E2WF1 1.018 351.2 Approximately 59 Mvar injection -26.8 0.943 0.7 0.941 32.5 B=5.5 Mvar 533134 FR2WLV21 B=8.9 Mvar -4.9 0.941 0.6 B=5.1 Mvar 533133 FR2WLV11 533125 FR2W1WF1 0.941 0.6 578531 FR3LV1 578533 FR3WTG1 B=4.1 Mvar B=3.5 Mvar 1.033 35.6 1.034 35.7 1.034

Figure 5-1: GEN-2010-005 and GEN-2007-025 with generators and capacitor banks turned off

Notes:

- 1. Amber boxes show distribution of charging capacitance in the facilities
- 2. Red box shows the net effect of all the charging capacitances at the POI
- 3. Dashed rectangular box shows what the interconnection customer is responsible for which is approximately 7.6Mvars

6. Short Circuit Analysis

The short circuit analysis was performed on the 2017 and 2025 Summer Peak power flow cases using the PSS/E ASCC program. Since the power flow model does not contain negative and zero sequence data, only three-phase symmetrical fault current levels were calculated at the point of interconnection and other buses up to and including five levels away from the POI.

Short Circuit Analysis was conducting using flat conditions with the following PSS/E ASCCC program settings:

- BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
- GENERATOR P=0, Q=0
- TRANSFORMER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
- LINE CHARGING=0.0 IN +/-/0 SEQUENCE
- LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
- LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
- DC LINES AND FACTS DEVICES BLOCKED
- TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

Results

The results of the short circuit analysis are shown in **Appendix F, Table F-1 GEN-2010-005 Short Circuit Analysis Results** (2017SP) and **Table F-2 GEN-2010-005 Short Circuit Analysis Results** (2025SP).

7. Conclusion

The GEN-2010-005 Interconnection Customer has requested a modification to its Generator Interconnection Request to change its Phase II generators from GE 1.6 MW wind turbines to Vestas 2.0 MW wind turbines. Originally, Phase I and Phase II consisted of one-hundred eighty-seven (187) GE 1.6MW wind turbines for a total 299.2 MW. The requested change is one hundred seven (107) GE 1.6MW wind turbines in Phase I and sixty-four (64) Vestas V110 2.0MW wind turbines in Phase II (total 299.2MW). The point of interconnection (POI) is the Westar Energy, Inc (WERE) Viola Substation 345kV.

Stability analysis has determined that with all previously assigned Network Upgrades in service, generators in the monitored areas remained stable and within the pre-contingency, voltage recovery, and post fault voltage recovery criterion of 0.7pu to 1.2pu for the entire modeled disturbances. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

A power factor analysis was performed for the wind turbine modification request. As reactive power is required for GEN-2010-005, the final requirement in the GIA will be the pro-forma 95% lagging to 95% leading at the POI.

A reduced generation analysis was conducted to determine reactor size necessary to compensate the capacitive effects on the transmission system during low or reduced wind conditions caused by the interconnecting project's generator lead transmission line and collector systems. The interconnection customer's facility is required to install a reactor or an equivalent means of compensation that can inject approximately 7.6Mvar of inductive reactance. Reactive compensation devices are typically installed on the low side of the project's Phase II substation 345/34.5kV transformer.

Short Circuit analysis was conducted using the current study upgrade 2017 summer peak and 2025 summer peak cases.

With the assumptions outlined in this report and with all the required network upgrades from the DISIS 2015-002 in place, GEN-2010-05 with the GE 1.6MW and Vestas V110 2.0MW wind turbine generators should be able to interconnect reliably to the SPP transmission grid. The change in wind turbine generator is not a Material Modification.

It should be noted that this study analyzed the requested modification to change generator technology, manufacturer, and layout. Powerflow analysis was not performed. This study analyzed many of the most probable contingencies, but it is not an all-inclusive list and cannot account for every operational situation. It is likely that the customer may be required to reduce its generation output to 0 MW, also known as curtailment, under certain system conditions to allow system operators to maintain the reliability of the transmission network.

Southwest Power Pool, Inc. Conclusion

Nothing in this study should be construed as a guarantee of delivery or transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service must be requested on Southwest Power Pool's OASIS by the Customer.

Appendix A - 2016 Winter Peak Stability Plots

(Available on request)

Appendix B - 2017 Summer Peak Stability Plots

(Available on request)

Appendix C - 2025 Summer Peak Stability Plots

(Available on request)

Appendix D - Power Factor Analysis Results

Table D-1: GEN-2010-005 and GEN-2007-025 Power Factor Analysis Results

Leading power factor is absorbing vars; Lagging power factor is providing vars

	GEN-2010-005 & GEN-2007-025							Summer Peak		
	POI: Viola 345 kV (532798)	POI Voltage =	= 1.009 pu		POI Voltage =	= 1.009 pu		POI Voltage = 1.008 pu		
	Power at POI (MW): 598.4									
		Mvars			Mvars			Mvars		
	Contingency Name	at POI	Power		at POI	Power F		at POI	Power F	
0	FLT_00_NoFault	-3.640	1.000	LEAD	-11.673	1.000	LEAD	-19.965	0.999	LEAD
1	FLT_01_Viola_Renfrow_345kV	2.794	1.000	LAG	-6.393	1.000	LEAD	-25.026	0.999	LEAD
2	FLT_02_Viola_Wichita_345kV	40.704	0.998	LAG	34.932	0.998	LAG	20.749	0.999	LAG
3	FLT_03_Renfrow_Hunter_345kV	22.720	0.999	LAG	17.449	1.000	LAG	2.906	1.000	LAG
4	FLT_04_Renfrow_Renfrow_345_138kV	-3.250	1.000	LEAD	-15.829	1.000	LEAD	-29.400	0.999	LEAD
5	FLT_05_Hunter_Woodring_345kV	91.203	0.989 ¹	LAG	74.923	0.992	LAG	52.930	0.996	LAG
6	FLT_06_Woodring_Sooner_345kV	-1.775	1.000	LEAD	-12.377	1.000	LEAD	-23.631	0.999	LEAD
7	FLT_07_Woodring_G15063Tap_345kV	19.022	0.999	LAG	9.377	1.000	LAG	8.220	1.000	LAG
8	FLT_08_Woodring_Woodring_345_138kV	0.555	1.000	LAG	-9.379	1.000	LEAD	-18.531	1.000	LEAD
9	FLT_09_Mathewson_Northwest_345kV	-6.294	1.000	LEAD	-13.621	1.000	LEAD	-22.861	0.999	LEAD
10	FLT_10_Mathewson_Cimarron_345kV	-2.127	1.000	LEAD	-10.466	1.000	LEAD	-19.262	0.999	LEAD
11	FLT_11_Mathewson_Tatonga_345kV	4.903	1.000	LAG	-7.260	1.000	LEAD	-16.956	1.000	LEAD
12	FLT_12_Sooner_SpringCreek_345kV	23.520	0.999	LAG	6.107	1.000	LAG	1.828	1.000	LAG
13	FLT_13_Sooner_G15066T_345kV	19.382	0.999	LAG	5.090	1.000	LAG	-0.847	1.000	LEAD
14	FLT_14_Sooner_Sooner_345_138kV	-2.486	1.000	LEAD	-14.779	1.000	LEAD	-20.663	0.999	LEAD
15	FLT_15_RanchRoad_Sooner_345kV	25.385	0.999	LAG	-0.281	1.000	LEAD	-8.740	1.000	LEAD
16	FLT_16_RanchRoad_OpenSky_345kV	-1.391	1.000	LEAD	-9.031	1.000	LEAD	-16.786	1.000	LEAD
17	FLT_17_Rosehill_Benton_345kV	-5.443	1.000	LEAD	-14.365	1.000	LEAD	-20.275	0.999	LEAD
18	FLT_18_Rosehill_WolfCreek_345kV	13.266	1.000	LAG	-6.217	1.000	LEAD	-8.930	1.000	LEAD
19	FLT_19_Rosehill_Latham_345kV	-3.692	1.000	LEAD	-10.488	1.000	LEAD	-19.464	0.999	LEAD
20	FLT_20_Rosehill_G15052T_345kV	43.634	0.997	LAG	34.019	0.998	LAG	34.665	0.998	LAG
21	FLT_21_Rosehill_Rosehill_345_138kV	-0.706	1.000	LEAD	-13.280	1.000	LEAD	-17.304	1.000	LEAD
22	FLT_22_Northwest_SpringCreek_345kV	19.112	0.999	LAG	14.477	1.000	LAG	12.755	1.000	LAG
23	FLT_23_Northwest_Cimarron_345kV	-2.975	1.000	LEAD	-11.028	1.000	LEAD	-19.031	0.999	LEAD
24	FLT_24_Northwest_Arcadia_345kV	0.221	1.000	LAG	-11.596	1.000	LEAD	-20.731	0.999	LEAD
25	FLT_25_Northwest_Northwest_345_138kV	-4.585	1.000	LEAD	-11.639	1.000	LEAD	-20.676	0.999	LEAD
26	FLT_26_Benton_WolfCreek_345kV	17.530	1.000	LAG	-2.927	1.000	LEAD	-6.428	1.000	LEAD
27	FLT_27_Benton_Benton_345_138kV	-6.427	1.000	LEAD	-17.085	1.000	LEAD	-21.159	0.999	LEAD
28	FLT_28_Wichita_Reno_345kV	29.393	0.999	LAG	-6.472	1.000	LEAD	-7.091	1.000	LEAD
29	FLT_29_Wichita_Benton_345kV	-28.068	0.999	LEAD	-31.900	0.999	LEAD	-43.010	0.997 ²	LEAD
30	FLT_30_Wichita_G1524&1525T_345kV	7.217	1.000	LAG	-4.288	1.000	LEAD	-13.343	1.000	LEAD
31	FLT_31_Wichita_Evans_345_138kV	-5.593	1.000	LEAD	-23.157	0.999	LEAD	-32.877	0.998	LEAD
32	FLT_32_Thistle_G1524&1525T_345kV	12.443	1.000	LAG	-0.955	1.000	LEAD	-9.499	1.000	LEAD
33	FLT_33_Thistle_Woodward_345kV	-3.256	1.000	LEAD	-11.459	1.000	LEAD	-20.541	0.999	LEAD
		I			1		1			

¹ Most lagging power factor

² Most leading power factor

60

FLT_60_Neosho_Blackberry_345kV

FLT_61_Neosho_Delaware_345kV

FLT_62_Neosho_CaneyCreek_345kV

Leading power factor is absorbing vars; Lagging power factor is providing vars 2016 Winter Peak 2017 Summer Peak 2025 Summer Peak GEN-2010-005 & GEN-2007-025 POI Voltage = 1.009 pu POI Voltage = 1.009 pu POI Voltage = 1.008 pu POI: Viola 345 kV (532798) Power at POI (MW): 598.4 Mvars Mvars Mvars Power Factor **Contingency Name Power Factor** at POI at POI at POI **Power Factor** FLT 34 Thistle ClarkCounty 345kV 2.322 1.000 LAG -7.988 1.000 IFAD -15.947 1.000 LEAD FLT_35_Thistle_Thistle_345_138kV -3.343 1.000 LEAD -10.215 1.000 -16.270 1.000 **LEAD** LEAD 1.000 36 FLT 36 Reno Summit 345kV 11.406 1.000 LAG 1.249 1.000 LAG -11.892 LEAD 37 FLT_37_Reno_Reno_345_115kV -2.0881.000 IFAD -11.932 1.000 **LEAD** -19.846 0.999 LEAD -0.562 FLT_38_Summit_JECN_345kV 1.000 IFAD -10.214 1.000 IFAD -19.339 0.999 LEAD 38 39 FLT 39 Summit ElmCreek 345kV -0.230 1.000 LEAD -8.562 1.000 LEAD -17.566 1.000 LEAD 40 FLT 40 Summit Summit 345 230kV -7.438 1.000 I FAD -12.287 1.000 LEAD -20.943 0.999 LEAD 41 FLT_41_EMPEC_Lang_345kV -4.248 1.000 LEAD -11.319 1.000 **LEAD** -19.433 0.999 LEAD 42 FLT_42_EMPEC_Morris_345kV 2.045 1.000 LAG -8.484 1.000 **LEAD** -16.954 1.000 LEAD -11.217 1.000 0.999 FLT_43_EMPEC_Swissvale_345kV 3.412 1.000 LAG IFAD -19.569 LEAD 43 FLT_44_EMPEC_G14001Tap_345kV 12.661 1.000 LAG 1.601 1.000 LAG -7.970 1.000 LEAD 45 FLT 45 Morris JECN 345kV -0.544 1.000 LEAD -10.768 1.000 LEAD 0.999 LEAD -19.186 46 FLT 46 Morris Morris 345 230kV -3.658 1.000 IFAD -10.760 1.000 **LEAD** -19.035 0.999 LEAD 47 FLT_47_Swissvale_Wgardner_345kV -5.499 1.000 LEAD -16.117 1.000 LEAD -23.503 0.999 LEAD FLT_48_Swissvale_Swissvale_345_230kV -4.337 1.000 **LEAD** -11.603 1.000 **LEAD** -19.922 0.999 LEAD 49 FLT_49_Wgardner_Stillwell_345kV 1.000 IFAD -12.198 1.000 IFAD -20.442 0.999 LFAD -4.02650 -0.988 1.000 IFAD -9.933 1.000 IFAD -18.257 1.000 LEAD FLT_50_Wgardner_Craig_345kV 51 FLT 51 Wgardner Lacygne 345kV 3.979 1.000 LAG -5.113 1.000 **LEAD** -13.000 1.000 LEAD 52 FLT_52_Wgardner_Wgardner_345_161kV -3.527 1.000 LEAD -11.643 1.000 LEAD -19.929 0.999 LEAD FLT_53_Stillwell_Peculiar_345kV -0.663 1.000 LEAD -10.409 1.000 LEAD -18.658 1.000 LEAD 1.000 1.000 1.000 FLT 54 Stillwell Lacygne 345kV 9.724 LAG -1.849**LEAD** -9.592 **LEAD** FLT_55_Stillwell_Stillwell_345_161kV 0.999 55 -3.2231.000 **IFAD** -11.453 1.000 **LEAD** -19.728 LEAD 56 LEAD -11.537 1.000 -19.740 0.999 LEAD FLT_56_Craig_87th_345kV -3.402 1.000 **LEAD** FLT_57_Craig_Craig_345_161kV -3.484 1.000 LEAD -11.697 1.000 LEAD -19.971 0.999 LEAD LEAD -10.344 LEAD LEAD FLT 58 Lacygne Neosho 345kV -0.171 1.000 1.000 -18.2641.000 59 82.833 0.991 LAG 36.133 0.998 LAG 26.496 0.999 LAG FLT_59_Lacygne_Waverly_345kV

-3.843

0.310

8.978

1.000

1.000

1.000

LEAD

LAG

LAG

-12.386

-9.538

-3.518

1.000

1.000

1.000

LEAD

LEAD

LEAD

-21.245

-16.715

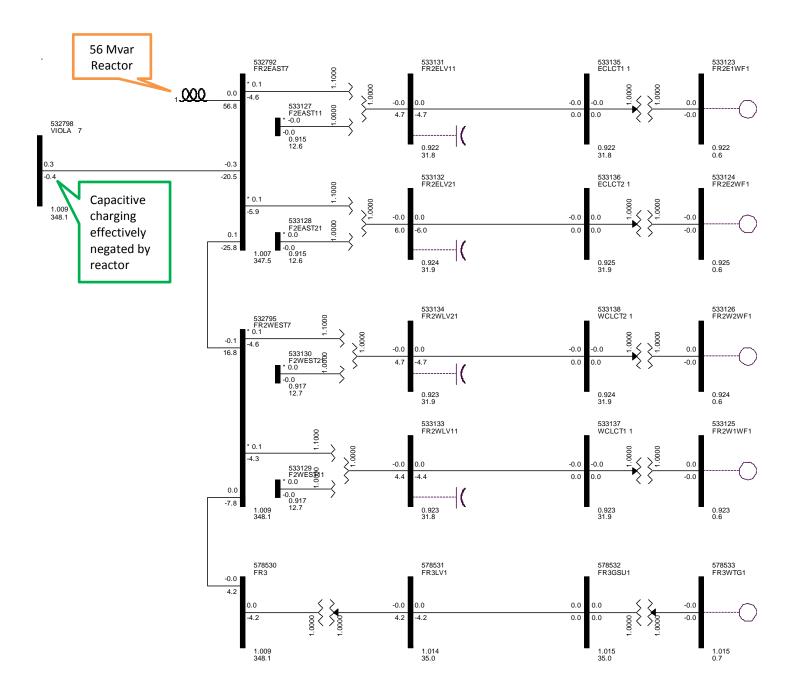
-13.519

0.999

1.000

1.000

LEAD


LEAD

LEAD

Appendix E - Reduced Wind Generation Analysis Results

Below figure is from the 2016WP model with identified upgrades in-service. The other two cases (2017SP and 2025SP) were almost identical since the Interconnection Request facilities design is the same in all cases.

Figure E-1: GEN-2010-005 and GEN-2007-025 with generators turned off and shunt reactor added to the 345kV side of the customer substation

Appendix F - Short Circuit Analysis Results

Table F-1: GEN-2010-005 Short Circuit Analysis Results (2017SP)

PSS(R)E-32.2.2 ASCC SHORT CIRCUIT CURRENTS 2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 17S WITH MMWG 15S, MRO 16W TOPO/16S PROF, SERC 16S

TUE, FEB 14 2017 17:10

OPTIONS USED:

- FLAT CONDITIONS
 - BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
 - GENERATOR P=0, Q=0
 - TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
 - LINE CHARGING=0.0 IN +/-/0 SEQUENCE
 - LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
 - LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
 - DC LINES AND FACTS DEVICES BLOCKED
 - TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

				THREE PHAS	E FAULT
X	BUS	X		/I+/	AN(I+)
532798	[VIOLA 7	345.00]	AMP	11409.3	-85.09
515543	[RENFROW7	345.00]	AMP	11221.6	-84.65
532792	FR2EAST7	345.00]	AMP	6214.1	-85.59
532796	[WICHITA7	345.00]	AMP	23718.1	-86.10
515476	[HUNTERS7	345.00]	AMP	12085.2	-84.69
515544	[RENFROW4	138.00]	AMP	13395.7	-84.83
532771	[RENO 7	345.00]	AMP	10671.1	-85.59
532791	[BENTON 7	345.00]	AMP	19033.4	-85.71
532795	[FR2WEST7	345.00]	AMP	5204.9	-85.65
533040	[EVANS N4	138.00]	AMP	37053.0	-87.18
560033	[G1524&G1525T	345.00]	AMP	19150.8	-86.29
562476	[G14-001-TAP	345.00]	AMP	10942.5	-85.04
583750	[GEN-2013-029	345.00]	AMP	10000.2	-84.61
514715	[WOODRNG7	345.00]	AMP	16959.2	-84.81
515477	[CHSHLMV7	345.00]	AMP	12069.2	-84.69
515546	[GRANTCO4	138.00]	AMP	6232.0	-81.17
515569	MDFRDTP4	138.00]	AMP	10854.0	-83.45
520409	[RENFROW4	138.00]	AMP	9946.2	-83.12
532768	[EMPEC 7	345.00]	AMP	17283.1	-86.19
532773	SUMMIT 7	345.00]	AMP	10231.9	-85.73
532794	[ROSEHIL7	345.00]	AMP	18824.7	-85.80
532797	[WOLFCRK7	345.00]	AMP	15971.2	-86.81
532986	[BENTON 4	138.00]	AMP	27908.2	-85.85
533041	[EVANS S4	138.00]	AMP	37053.0	-87.18
533065	[SG12COL4	138.00]	AMP	20146.8	-85.76
533390	[MAIZEW 4	138.00]	AMP	25939.2	-85.53
533416	[RENO 3	115.00]	AMP	21539.8	-85.57
539801	[THISTLE7	345.00]	AMP	15378.5	-85.86
578530	[FR3	345.00]	AMP	4839.4	-85.62
583850	[GEN-2014-001	345.00]	AMP	7502.8	-84.76
584659	[G15024G15025	345.00]	AMP	6650.0	-86.46
514714	[WOODRNG4	138.00]	AMP	18627.1	-83.28
514803	[SOONER 7	345.00]	AMP	24554.8	-86.49
515375	[WWRDEHV7	345.00]	AMP	18092.5	-85.93
520205	[WAKITAS4	138.00]	AMP	5641.1	-80.47
522397	[MDFRDJCT	138.00]	AMP	7153.1	-82.24
532767	BLUSTEM7	345.00	AMP	9609.0	-86.22
532769	LANG 7	345.00	AMP	17072.2	-86.18
532770	MORRIS 7	345.00	AMP	12731.0	-85.54
532774	[SWISVAL7	345.00]	AMP	16423.8	-85.37

532799	[WAVERLY7	345.00]	AMP	14712.8	-86.51
532800	- [LATHAMS7	345.00]	AMP	10459.6	-85.56
532873	[SUMMIT 6	230.00]	AMP	12906.7	-85.19
532988	[BELAIRE4	138.00]	AMP	18637.6	-84.79
	-	138.00]			
532990	[MIDIAN 4	_	AMP	10061.0	-80.49
533015	[BENTLEY4	138.00]	AMP	9827.5	-85.10
533024	[29TH 4	138.00]	AMP	19399.9	-85.12
533035	[CHISHLM4	138.00]	AMP	21786.1	-84.81
533053	[LAKERDG4	138.00]	AMP	17996.8	-85.60
533054	[MAIZE 4	138.00]	AMP	22202.1	-85.18
533062	[ROSEHIL4	138.00]	AMP	30970.3	-86.16
533074	_ [45TH ST4	138.00]	AMP	25950.4	-85.68
533413	[CIRCLE 3	115.00]	AMP	18064.1	-85.03
533415	[DAVIS 3	115.00]	AMP	8102.7	-82.40
533429	[MOUNDRG3	115.00]	AMP	7010.5	-83.06
	-	-			
533438	[WMCPHER3	115.00]	AMP	10832.7	-84.14
539800	[CLARKCOUNTY7	-	AMP	12611.4	-84.73
539804	[THISTLE4	138.00]	AMP	16296.2	-86.47
539805	[ELMCREEK7	345.00]	AMP	5251.7	-85.37
560031	[G15-015-TAP	138.00]	AMP	8035.1	-81.07
560053	[G15-052T	345.00]	AMP	13120.0	-86.45
560055	[G15-063T	345.00]	AMP	16815.0	-84.89
584660	[GEN-2015-024	-	AMP	5405.6	-86.43
584670	GEN-2015-025		AMP	6534.5	-86.43
585100	[GEN-2015-073	_	AMP	14171.8	-85.65
585250	[GEN-2015-096		AMP	3101.8	-85.71
	OTTER 4	138.00]		9517.5	-82.41
514708	-	-	AMP		
514709	[FRMNTAP4	138.00]	AMP	17452.3	-82.86
514711	[WAUKOTP4	138.00]	AMP	14930.7	-81.70
514733	MARSHL 4	138.00]	AMP	7781.9	-80.53
514802	[SOONER 4	138.00]	AMP	31300.9	-86.78
514881	[SPRNGCK7	345.00]	AMP	21364.0	-85.53
515376	[WWRDEHV4	138.00]	AMP	24270.5	-84.93
515458	[BORDER 7	7345.00]	AMP	5004.3	-86.21
515497	MATHWSN7	345.00	AMP	27500.2	-85.77
515576	RANCHRD7	345.00	AMP	13752.1	-86.64
515581	[COYOTE 4	138.00]	AMP	8000.5	-80.46
515599	[NBUFFRG7	345.00]	AMP	8239.3	-85.98
515621	[OPENSKY7	345.00]	AMP	12757.4	-86.62
		_			
520212	[WAKITA4	138.00]	AMP	5603.3	-80.46
522398	[PONDCREEK	138.00]	AMP	5333.4	-81.65
530592	[SMOKYHL6	230.00]	AMP	6884.6	-84.32
532766	[JEC N 7	345.00]	AMP	23298.6	-87.51
532780	[CANEYRV7	345.00]	AMP	9887.0	-85.50
532801	[ELKRVR17	345.00]	AMP	9235.9	-85.46
532802	[WAVERTX7	345.00]	AMP	12556.3	-86.05
532856	[SWISVAL6	230.00]	AMP	21813.3	-85.42
532863	MORRIS 6	230.00]	AMP	13782.0	-85.33
532871	[CIRCLE 6	230.00]	AMP	8522.2	-84.20
532872	[EMCPHER6	230.00	AMP	7716.0	-83.42
532874	[UNIONRG6	230.00]	AMP	8763.7	-83.67
532987	[BUTLER 4	138.00]	AMP	9874.8	-79.45
	-				
532991	[WEAVER 4	138.00]	AMP	21745.4	-83.96
533012	[HALSTDS4	138.00]	AMP	4213.6	-85.32
533013	[MOUND 4	138.00]	AMP	4799.9	-84.74
533016	[WWUPLNT4	138.00]	AMP	7583.1	-84.70
533031	[BURNSTP4	138.00]	AMP	4469.5	-76.64
533037	[COMOTAR4	138.00]	AMP	18394.3	-84.62
533038	[COWSKIN4	138.00]	AMP	18334.6	-84.63
533039	ELPASO 4	138.00]	AMP	24291.5	-84.19
533049	[HOOVERN4	138.00]	AMP	17648.9	-84.96
533060	[NOEASTE4	138.00]	AMP	20280.6	-84.76
533064	[17TH 4	138.00]	AMP	17535.6	-84.54
533068	[STEARMN4	138.00]	AMP	19342.0	-84.21
222000	Lateuman	-50.00]	AL IL	17542.0	07.21

```
533304 [LANG 3
                   115.00] AMP
                                   14440.2
                                            -85.16
533336 [BLUSTEM3 115.00] AMP
                                   16964.4
                                            -86.43
533372 [PHILIPS3 115.00] AMP
                                   12014.8 -84.15
533380 [SPRGCRK3 115.00] AMP
                                   3589.8 -72.59
533381 [SUMMIT 3 115.00] AMP
                                   16809.6 -86.26
533391 [MAIZEE 4 138.00] AMP
                                   20950.0
                                             -85.00
533412 [ARKVALJ3 115.00] AMP
                                   9755.6
                                             -83.28
533414 [CITIES 3 115.00] AMP
                                   8103.5
                                             -82.20
533419 [HEC 3 115.00] AMP
                                   16911.8
                                             -84.92
533421 [HEC GT 3 115.00] AMP
                                   17570.5
                                             -85.04
533422 [HEC U4 3 115.00] AMP
                                   17126.9
                                             -84.70
533426 [MANVILE3 115.00] AMP
                                   8273.2
                                             -82.50
533428 [MCPHER 3 115.00] AMP
533439 [WHEATLD3 115.00] AMP
539638 [FLATRDG4 138.00] AMP
539639 [ELMCREK6 230.00] AMP
                                   10463.5
                                            -84.18
                                   7303.1
                                            -83.61
                                   14623.8
                                            -85.83
                                   7279.5
                                            -84.78
539803 [IRONWOOD7 345.00] AMP
                                   12837.3
                                            -84.51
542965 [W.GRDNR7 345.00] AMP
                                   25251.9
                                            -85.83
                   345.00] AMP
                                            -86.88
542981 [LACYGNE7
                                   24950.3
560000 [G11-14-TAP 345.00] AMP
                                            -86.30
                                   13223.5
560002 [IRONWOOD7 345.00] AMP
                                            -85.12
                                   12871.2
                    345.00] AMP
560056 [G15-066T
                                   17956.6
                                            -86.54
562075 [G11-051-TAP 345.00] AMP
                                   12110.3
                                             -86.54
582008 [GEN-2011-008345.00] AMP
                                   10471.8
                                             -84.37
582019 [GEN-2011-019345.00] AMP
                                   18092.5
                                             -85.93
582020 [GEN-2011-020345.00] AMP
                                   18092.5
                                             -85.93
                                             -84.64
583370 [GEN-2012-024345.00] AMP
                                   10839.3
584570 [GEN-2015-015138.00] AMP
                                   5665.4
                                             -81.68
584690 [GEN-2015-030345.00] AMP
                                   18710.1
                                            -85.92
                                             -83.76
584880 [GEN-2015-047345.00] AMP
                                   11487.6
584900 [GEN-2015-052345.00] AMP
                                   13069.8
                                             -86.42
585010 [GEN-2015-063345.00] AMP
                                   16756.6
                                            -84.86
```

Table F-2: GEN-2010-005 Short Circuit Analysis Results (2025SP)

PSS(R)E-32.2.2 ASCC SHORT CIRCUIT CURRENTS

TUE, FEB 14 2017 17:12

2015 MDWG FINAL WITH 2013 MMWG, UPDATED WITH 2014 SERC & MRO MDWG 2025S WITH MMWG 2024S, MRO & SERC 2025 SUMMER

OPTIONS USED:

- FLAT CONDITIONS
 - BUS VOLTAGES SET TO 1 PU AT 0 PHASE ANGLE
 - GENERATOR P=0, Q=0
 - TRANSFOMRER TAP RATIOS=1.0 PU and PHASE ANGLES=0.0
 - LINE CHARGING=0.0 IN +/-/0 SEQUENCE
 - LOAD=0.0 IN +/- SEQUENCE, CONSIDERED IN ZERO SEQUENCE
 - LINE/FIXED/SWITCHED SHUNTS=0.0 AND MAGNETIZING ADMITTANCE=0.0 IN +/-/0 SEQUENCE
 - DC LINES AND FACTS DEVICES BLOCKED
 - TRANSFORMER ZERO SEQUENCE IMPEDANCE CORRECTIONS IGNORED

					THREE PHA	SE FAULT
X	BUS	;	X		/I+/	AN(I+)
532798	[VIOLA	7	345.00]	AMP	13506.5	-85.45
515543	[RENFROW	17	345.00]	AMP	11853.9	-84.75
532792	[FR2EAST	7	345.00]	AMP	6648.9	-85.72
532796	[WICHITA	7	345.00]	AMP	24680.8	-86.24
533075	[VIOLA	4	138.00]	AMP	22036.2	-86.03
515476	[HUNTERS	57	345.00]	AMP	12445.0	-84.73
515544	[RENFROW	14	138.00]	AMP	13620.7	-84.89
532771	[RENO	7	345.00]	AMP	11457.1	-85.98
532791	[BENTON	7	345.00]	AMP	19393.9	-85.74

532795	[FR2WEST7	345.00]	AMP	5481.1	-85.75
532984	SUMNER 4	138.00]	AMP	10180.1	-82.91
533036	CLEARWT4	138.00	AMP	21755.7	-85.40
533040	EVANS N4	138.00	AMP	42055.9	-87.26
533046	-	138.00	AMP	28357.0	-85.43
560033	[G1524&G1525T		AMP	19678.1	-86.39
562476	_	345.00	AMP	11042.5	-85.05
583750	[GEN-2013-029	-	AMP	10492.1	-84.69
514715	[WOODRNG7	345.00]	AMP	17310.7	-84.83
515477	-	345.001	AMP	12428.0	-84.73
515546	L	138.00]	AMP	6278.3	-81.16
515569	[MDFRDTP4	138.00]	AMP	10995.2	-83.46
520409	L	138.00]	AMP	10059.0	-83.14
532768	_	345.00]	AMP	17389.2	-86.18
532773	-	345.00]	AMP	10600.8	-85.90
532794	_	345.00]	AMP	19128.0	-85.82
532797	-	345.00]	AMP	16039.4	-86.82
532982	-	138.00]	AMP	9220.5	-82.96
	-	-		28458.3	-85.85
532986	_	138.00]	AMP		
532992	=	138.00]	AMP	5687.2	-83.30
533029	=	138.00]	AMP	18951.4	-83.68
533041	L	138.00]	AMP	42055.9	-87.26
533045	-	138.00]	AMP	28357.0	-85.43
533063	[SC10BEL4	138.00]	AMP	10109.9	-81.91
533065	-	138.00]	AMP	21501.9	-85.71
533390	<u> </u>	138.00]	AMP	27864.2	-85.44
533416	<u> </u>	115.00]	AMP	25059.6	-86.11
533880	[GODDARD2	138.00]	AMP	18933.2	-85.91
539675	-	138.00]	AMP	7082.4	-75.28
539801	Ξ	345.00]	AMP	15716.4	-85.88
578530	[FR3	345.00]	AMP	5072.8	-85.71
583850	[GEN-2014-001	-	AMP	7545.9	-84.77
584659	[G15024G15025	-	AMP	6698.0	-86.48
514714	=	138.00]	AMP	18753.3	-83.27
514803	-	345.00]	AMP	24754.9	-86.49
515375	-	345.00]	AMP	20414.7	-86.01
520205	-	138.00]	AMP	5664.4	-80.47
522397	[MDFRDJCT	138.00]	AMP	7214.1	-82.23
532767	[BLUSTEM7	345.00]	AMP	9737.1	-86.29
532769	[LANG 7	345.00]	AMP	17175.8	-86.17
532770	[MORRIS 7	345.00]	AMP	12794.9	-85.53
532774	[SWISVAL7	345.00]	AMP	16681.3	-85.36
532799	[WAVERLY7	345.00]	AMP	14764.2	-86.51
532800	[LATHAMS7	345.00]	AMP	10515.9	-85.56
532873	[SUMMIT 6	230.00]	AMP	13478.4	-85.34
532981	[CRESWLN4	138.00]	AMP	7946.4	-81.84
532985	[TCROCK 4	138.00]	AMP	5318.8	-83.30
532988	[BELAIRE4	138.00]	AMP	18906.2	-84.76
532990	[MIDIAN 4	138.00]	AMP	10208.1	-81.79
533015	[BENTLEY4	138.00]	AMP	10120.2	-85.06
533024	29TH 4	138.00]	AMP	19689.4	-85.09
533035	CHISHLM4	138.00	AMP	22456.6	-84.77
533039	ELPASO 4	138.00	AMP	25582.3	-84.20
533042	FARBER 4	138.00	AMP	16371.7	-83.75
533044	_	138.00	AMP	28357.0	-85.43
533053	_	138.00	AMP	18961.9	-85.56
533054	-	138.00]	AMP	23381.2	-85.11
533062	-	138.00]	AMP	31772.9	-86.17
533072	_	138.00]	AMP	23416.6	-85.30
533074	-	138.00]	AMP	29217.4	-86.42
533413	_	115.00]	AMP	22714.6	-85.87
533415		115.00]	AMP	8741.9	-82.40
533429	_	115.00]	AMP	7183.7	-83.13
533438	_	115.00]	AMP	12426.2	-84.78
222 420	L			12.20.2	5,5

539668	[HARPER 4	138.00]	AMP	5950.8	-79.19
539676	[MILAN 4	138.00]	AMP	4204.6	-73.50
539800	CLARKCOUNTY7	345.00	AMP	12693.8	-84.73
539804	[THISTLE4	138.00]	AMP	16515.4	-86.38
539805	[ELMCREEK7	345.00]	AMP	5313.6	-85.43
	<u> </u>	138.00]			
560031	_	_	AMP	8141.8	-80.98
560053	[G15-052T	345.00]	AMP	13192.5	-86.46
560055	[G15-063T	345.00]	AMP	17261.2	-84.94
584660	[GEN-2015-024	345.00]	AMP	5436.3	-86.45
584670	[GEN-2015-025	345.00]	AMP	6580.7	-86.45
585100	[GEN-2015-073	345.00]	AMP	14242.4	-85.64
585200	[GEN-2015-083	_	AMP	6978.0	-80.57
585250	[GEN-2015-090		AMP	3110.7	-85.71
514708	OTTER 4	138.00]	AMP	9547.2	-82.39
514709	FRMNTAP4	138.00]	AMP	17564.3	-82.85
	-	-			
514711	-	138.00]	AMP	15017.6	-81.70
514733	[MARSHL 4	138.00]	AMP	7799.1	-80.52
514802	SOONER 4	138.00]	AMP	31805.6	-86.81
514804	[MIDLTNT4	138.00]	AMP	7806.1	-79.70
514881	[SPRNGCK7	345.00]	AMP	21877.0	-85.53
515376	[WWRDEHV4	138.00]	AMP	25235.7	-85.11
515458	BORDER 7	345.00	AMP	5118.6	-86.21
515497	MATHWSN7	345.00	AMP	29723.6	-86.08
515576	[RANCHRD7	345.00]	AMP	13791.9	-86.64
515581	COYOTE 4	138.00]	AMP	8127.8	-80.35
	-				
515599	[NBUFFRG7	345.00]	AMP	8595.2	-85.98
515621	[OPENSKY7	345.00]	AMP	12795.8	-86.62
520212	[WAKITA4	138.00]	AMP	5626.1	-80.45
522398	[PONDCREEK	138.00]	AMP	5367.2	-81.64
530592	[SMOKYHL6	230.00]	AMP	6941.3	-84.30
532766	[JEC N 7	345.00]	AMP	23513.3	-87.51
532776	DOUGLAS7	345.00	AMP	18181.1	-85.14
532780	CANEYRV7	345.00	AMP	9931.3	-85.50
532801	[ELKRVR17	345.00]	AMP	9279.4	-85.46
532802	[WAVERTX7	345.00]	AMP	12593.0	-86.05
532856	[SWISVAL6	230.00]	AMP	21903.8	-85.41
	-	-			
532863	[MORRIS 6	230.00]	AMP	13858.1	-85.32
532871	[CIRCLE 6	230.00]	AMP	9520.3	-84.80
532872	[EMCPHER6	230.00]	AMP	8520.3	-83.90
532874	[UNIONRG6	230.00]	AMP	8856.4	-83.66
532987	[BUTLER 4	138.00]	AMP	10036.8	-81.33
532991	[WEAVER 4	138.00]	AMP	22305.4	-84.07
533012	HALSTDS4	138.00	AMP	4264.6	-85.38
533013	MOUND 4	138.00	AMP	4877.3	-84.82
533016	[WWUPLNT4	138.00]	AMP	7756.1	-84.66
533031	[BURNSTP4	138.00]	AMP	4501.5	-77.18
533032	BU11PON4	138.00]	AMP	15174.5	-80.35
533032	[CENTENN4	138.00]			-84.63
	-	-	AMP	16602.6	
533037	[COMOTAR4	138.00]	AMP	18668.0	-84.58
533038	[COWSKIN4	138.00]	AMP	20310.5	-85.57
533049	[HOOVERN4	138.00]	AMP	18843.3	-84.96
533051	[INTERST4	138.00]	AMP	17421.0	-84.27
533060	[NOEASTE4	138.00]	AMP	20635.5	-84.72
533064	[17TH 4	138.00]	AMP	17994.0	-84.51
533066	64TH 4	138.00]	AMP	14454.4	-83.03
533068	STEARMN4	138.00]	AMP	19903.0	-84.17
533070	[SLATECRK4	138.00]	AMP	4502.0	-81.76
	[LANG 3	115.00]		14470.0	-85.15
533304	_	_	AMP		
533336	[BLUSTEM3	115.00]	AMP	17078.9	-86.54
533372	[PHILIPS3	115.00]	AMP	12363.6	-84.25
533380	[SPRGCRK3	115.00]	AMP	3618.4	-72.52
533381	[SUMMIT 3	115.00]	AMP	17359.3	-86.39
533391	[MAIZEE 4	138.00]	AMP	21888.6	-84.94
533412	[ARKVALJ3	115.00]	AMP	10849.0	-83.58

533414	[CITIES 3	115.00]	AMP	8884.2	-82.20
533419	[HEC 3	115.00]	AMP	22185.6	-85.85
533422	[HEC U4 3	115.00]	AMP	21785.0	-85.66
533426	[MANVILE3	115.00]	AMP	10206.9	-83.83
533428	[MCPHER 3	115.00]	AMP	11944.6	-84.75
533439	[WHEATLD3	115.00]	AMP	7900.6	-83.95
539000	[RAGO 4	138.00]	AMP	3602.5	-81.08
539001	[ANTHONY4	138.00]	AMP	3616.3	-80.97
539004	[MAYFLD 4	138.00]	AMP	3740.3	-75.96
539638	[FLATRDG4	138.00]	AMP	14826.5	-85.71
539639	[ELMCREK6	230.00]	AMP	7341.9	-84.83
539803	[IRONWOOD7	345.00]	AMP	12904.4	-84.48
542981	[LACYGNE7	345.00]	AMP	25069.4	-86.87
560000	[G11-14-TAP	345.00]	AMP	13556.7	-86.32
560002	[IRONWOOD7	345.00]	AMP	12938.9	-85.10
560056	[G15-066T	345.00]	AMP	18051.6	-86.54
562075	[G11-051-TAP	345.00]	AMP	17171.7	-86.37
582008	[GEN-2011-008	345.00]	AMP	10522.1	-84.37
582019	[GEN-2011-019	345.00]	AMP	20414.7	-86.01
582020	[GEN-2011-026	345.00]	AMP	20414.7	-86.01
583370	[GEN-2012-024	345.00]	AMP	10899.7	-84.64
584570	[GEN-2015-015	138.00]	AMP	5713.4	-81.62
584690	[GEN-2015-036	345.00]	AMP	18824.9	-85.92
584880	[GEN-2015-047	345.00]	AMP	11525.8	-83.74
584900	[GEN-2015-052	2345.00]	AMP	13141.7	-86.43
585010	[GEN-2015-063	345.00]	AMP	17199.4	-84.91