

K: Stability Study for Group 3

K-1

Definitive Interconnection System Impact Study for Grouped Generation Interconnection Requests - (DISIS-2009-001)

Draft Report for

Southwest Power Pool

Prepared by: Excel Engineering, Inc.

January 19, 2010

Principal Contributors:

Shu Liu, P.E. William Quaintance, P.E.

TABLE OF CONTENTS

LIS	T OF FIGURES
LIS	T OF TABLES
0.	CERTIFICATION4
1.	BACKGROUND AND SCOPE5
2.	EXECUTIVE SUMMARY7
3.	STUDY DEVELOPMENT AND ASSUMPTIONS
3.1	Simulation Tools8
3.2	Models Used8
3.3	Monitored Facilities
3.4	Performance Criteria10
3.5	Performance Evaluation Methods11
4.	RESULTS AND OBSERVATIONS16
4.1	Stability Analysis Results16
4.2	Generator Performance22
4.3	Power Factor Requirements23
5.	CONCLUSIONS

- Appendix A Summer Peak Plots
- Appendix B Winter Peak Plots
- Appendix C Power Factor Details
- Appendix D Project Model Data

List of Figures

Figure 3-1.	Power Flow One-line for GEN-2007-040 and adjacent equipment (SP)
Figure 3-2.	Power Flow One-line for GEN-2008-079 and adjacent equipment (SP)9
Figure 3-3.	Power Flow One-line for GEN-2008-124 and adjacent equipment (SP) 10
Figure 4-1.	GEN-2007-040 Plot for Fault 7 – 3-Phase Fault on the Holcomb to GEN-2007-
	040 345 kV line, near GEN-2007-040 19
Figure 4-2.	POI Voltages Plot for Fault 7 – 3-Phase Fault on the Holcomb to GEN-2007-040
	345 kV line, near GEN-2007-040 19
Figure 4-3.	GEN-2008-079 Plot for Fault 43 – 3-Phase Fault on the GEN-2008-079 to
	Cudahy 115 kV line, near GEN-2008-079 20
Figure 4-4.	POI Voltages Plot for Fault 43 – 3-Phase Fault on the GEN-2008-079 to Cudahy
	115 kV line, near GEN-2008-079
Figure 4-5.	GEN-2008-124 (Unit 1) Plot for Fault 13 – 3-Phase Fault on the Spearville to
	Comanche 345 kV line, near Spearville
Figure 4-6.	GEN-2008-124 (Unit 2) Plot for Fault 13 – 3-Phase Fault on the Spearville to
	Comanche 345 kV line, near Spearville
Figure 4-7.	POI Voltages Plot for Fault 13 – 3-Phase Fault on the Spearville to Comanche
	345 kV line, near Spearville

List of Tables

Table 1-1.	Interconnection Requests Evaluated	. 5
Table 1-2.	Nearby Interconnection Requests Already in the Queue	. 5
Table 3-1.	Fault Definitions for DISIS-2009-001 Group 3	11
	Summary of Stability Results	
Table 4-2.	Power Factor Requirements ¹	
Table 5-1.	Interconnection Requests Evaluated	25

0. Certification

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the Laws of the State of **Arkansas**.

> William Quaintance Arkansas Registration Number 13865

1. Background and Scope

The DISIS-2009-001 Group 3 Definitive Impact Study is a generation interconnection study performed by Excel Engineering, Inc. for its non-affiliated client, Southwest Power Pool (SPP). Its purpose is to study the impacts of interconnecting the projects shown in Table 1-1. The inservice date assumed for the generation addition was 2010.

Table 1-1. Interconnection Requests Evaluated					
Request	Size (MW)	Wind Turbine Model	Point of Interconnection		
GEN-2007-040	2007-040 200 Siemens 2.3MW Holcomb (531449) – Spearville (531469) Bus # 531000 Bus # 531000		Holcomb (531449) – Spearville (531469) 345kV. Bus # 531000		
GEN-2008-079	008-079 100.5 G.E. 1.5 MW Tap Cudahy (539659) – Judson Large (53) 115kV. Bus # 573029 115kV. Bus # 573029		Tap Cudahy (539659) – Judson Large (539671) 115kV. Bus # 573029		
GEN-2008-124	200	Siemens 2.3MW	Spearville (531469) 345kV		

 Table 1-1.
 Interconnection Requests Evaluated

The previously-queued requests shown in Table 1-2 were included in this study.

Request	Size (MW)	Wind Turbine Model	Point of Interconnection	
GEN-2001-039A	105	Clipper 2.5MW	Judson Large – Greensburg 115kV (103)	
GEN-2002-025A	150	GE 1.5 MW	Spearville 230kV (539695)	
GEN-2004-014	154.5	GE 1.5 MW	Spearville 230kV (539695)	
GEN-2005-012	250	250 Vestas V90 3.0MW Spearville 345kV (531469)		
GEN-2006-006	205	GE 1.5 MW	Spearville 230kV (539695)	
GEN-2006-021	1 100 Clipper 2.5MW Tap Harper (539668) – Medicine Lodge (5138kV. Bus # 539638)		Tap Harper (539668) – Medicine Lodge (539674) 138kV. Bus # 539638	
GEN-2006-022	150	Clipper 2.5MW	Pratt 115kV (539687)	
GEN-2007-038	200	Clipper 2.5MW	Spearville 345kV (531469)	
GEN-2008-018	405	GE 1.5 MW	Finney 345kV (523853)	

 Table 1-2.
 Nearby Interconnection Requests Already in the Queue

The study included a stability analysis for each proposed interconnection request. Contingencies that resulted in a prior-queued project tripping off-line, if any, were re-run with the prior-queued project's voltage and frequency tripping disabled. Since all of the three interconnection requests in this group are wind projects, a power factor analysis was performed.

ATC (Available Transfer Capability) studies were not performed as part of this study. These studies will be required at the time transmission service is actually requested. Additional transmission upgrades may be required based on that analysis.

Study assumptions in general have been based on Excel's knowledge of the electric power system and on the specific information and data provided by SPP. The accuracy of the conclusions contained within this study is sensitive to the assumptions made with respect to other generation additions and transmission improvements being contemplated by other entities. Changes in the assumptions of the timing of other generation additions or transmission improvements will affect this study's conclusions.

2. Executive Summary

The DISIS-2009-001 Group 3 Definitive Impact Study evaluated the impacts of interconnecting projects GEN-2007-040, GEN-2008-079, and GEN-2008-124 to the SPP electric system.

No stability problems were found during summer or winter peak conditions due to the addition of these generators.

Power factor requirements were determined, and all study plants must install sufficient reactive power resources to meet these requirements listed in Table 4-2. The reactive power resources need not be dynamically controlled. However, any change in wind turbine model or controls could change the stability results, possibly resulting in a need for a dynamically controlled reactive power supply.

With the assumptions described in this report, DISIS-2009-001 Group 3 should be able to connect without causing any stability problems on the SPP transmission grid.

3. Study Development and Assumptions

3.1 Simulation Tools

The Siemens Power Technologies, Inc. PSS/E power system simulation program Version 30.3.3 was used in this study.

3.2 Models Used

SPP provided its latest stability database cases for both summer and winter peak seasons. Each plant's PSS/E model had been developed prior to this study and was included in the power flow case and the dynamics database. As a result, no additional generator modeling was required. Power flow and dynamic model data for the study plants are provided in Appendix D.

Power flow one-line diagrams of the study projects in summer peak conditions are shown in Figure 3-1, Figure 3-2, and Figure 3-3. As the figures show, each plant model includes explicit representation of the radial transmission line, if any; the substation transformer(s) from transmission voltage to 34.5 kV; and the substation reactive power device(s), if any. The remainder of each wind farm is represented by one or more lumped equivalents including a generator, a step-up transformer, and a collector system impedance.

No special modeling is required of line relays in these cases, except for the special modeling related to the wind-turbine tripping.

3.3 Monitored Facilities

All generators in Areas 520 524 525 526 531 534 536 539, and 541 were monitored.

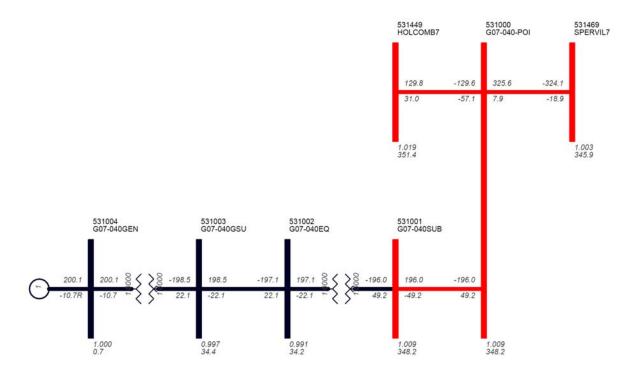


Figure 3-1. Power Flow One-line for GEN-2007-040 and adjacent equipment (SP)

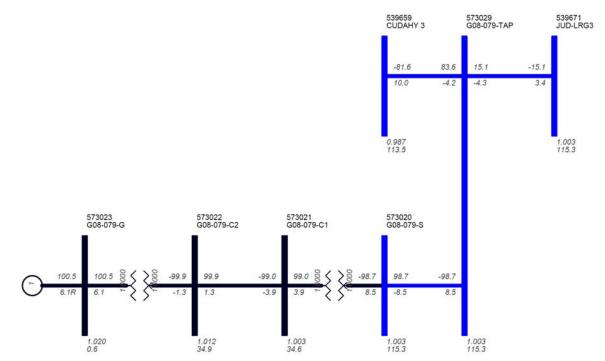


Figure 3-2. Power Flow One-line for GEN-2008-079 and adjacent equipment (SP)

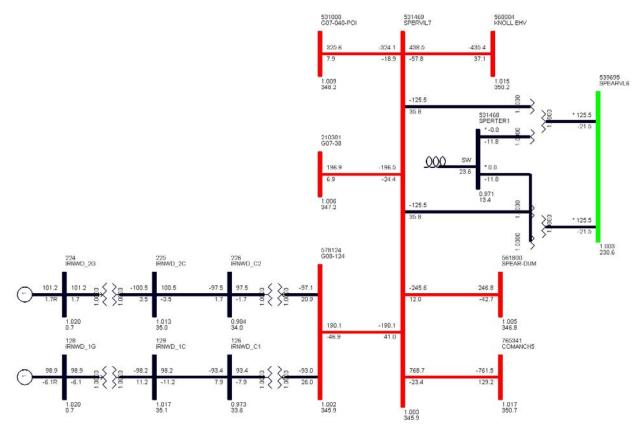


Figure 3-3. Power Flow One-line for GEN-2008-124 and adjacent equipment (SP)

3.4 Performance Criteria

The wind generators must comply with the FERC Order 661A on low voltage ride through for wind farms. Therefore, the wind generators should not trip off line for faults for under voltage relay actuation. If a wind generator trips off line, an appropriately sized SVC or STATCOM device may need to be specified to keep the wind generator on-line for the fault. SPP was consulted to determine if the addition of an SVC or STATCOM is warranted for the specific condition.

Contingencies that resulted in a prior-queued project tripping off-line, if any, were re-run with the prior-queued project's voltage and frequency tripping disabled to check for stability issues.

3.5 Performance Evaluation Methods

Since all of the interconnection requests are wind projects, a power factor analysis was performed. The power factor analysis consisted of modeling a var generator in each wind farm holding a voltage schedule at the POI. The voltage schedule was set equal to the higher of the voltage with the wind farm off-line or 1.0 per unit.

If the required power factor at the POI is beyond the capability of the studied wind turbines, then capacitor banks would be considered. Factors used in sizing capacitor banks would include two requirements of FERC Order 661A: the ability of the wind farm to ride through low voltage with and without capacitor banks and the ability of the wind farm to recover to pre-fault voltage. If a wind generator trips on high voltage, a leading power factor may be required.

ATC studies were not performed as part of this study. These studies will be required at the time transmission service is actually requested. Additional transmission facilities may be required based on subsequent ATC analysis.

Stability analysis was performed for each proposed interconnection request. Faults were simulated on transmission lines at the POIs and on other nearby transmission equipment. The faults in Table 3-1 were run for each case (three phase and single phase as noted).

Cont. No.	Cont. Name	Description
1	FLT01-3PH	 3 phase fault on the Finney (523853) to GEN-2003-013 (560029) 345kV line, near Finney. a. Apply fault at the Finney 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
2	FLT02-1PH	Single phase fault and sequence like previous
3	FLT03-3PH	 3 phase fault on one of the Finney (523853) to Holcomb (531449) 345kV lines, near Finney. a. Apply fault at the Finney 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
4	FLT41PH	Single phase fault and sequence like previous
5	FLT5-3PH	 3 phase fault on the Holcomb (531449) to Setab (531465) 345kV line, near Holcomb. a. Apply fault at the Holcomb 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
6	FLT6-1PH	Single phase fault and sequence like previous

Table 3-1.Fault Definitions for DISIS-2009-001 Group 3

Cont. No.	Cont. Name	Description	
7	FLT7-3PH	 3 phase fault on the Holcomb (531449) to GEN-2007-040 (531000) 345kV line, near GEN-2007-040. a. Apply fault at the GEN-2007-040 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	
8	FLT8-1PH	Single phase fault and sequence like previous	
9	FLT9-3PH	 3 phase fault on the Holcomb 345kV (531449) to 115kV (531448) transformer, near the 345 kV bus. a. Apply fault at the Holcomb 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer. 	
10	FLT10-1PH	Single phase fault and sequence like previous	
11	FLT11-3PH	 3 phase fault on the Spearville (531469) to GEN-2007-040 (531000) 345kV line, near GEN-2007-040. a. Apply fault at the GEN-2007-040 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	
12	FLT12-1PH	Single phase fault and sequence like previous	
13	FLT13-3PH3 phase fault on the Spearville (531469) to Comanche (765341) 345kV line, near Spearville.FLT13-3PHa. Apply fault at the Spearville 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.		
14	FLT14-1PH	Single phase fault and sequence like previous	
15	FLT15-3PH	 3 phase fault on the Spearville 345kV (531469) to 230kV (539695) transformer, near the 345 kV bus. a. Apply fault at the Spearville 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer. 	
16	FLT16-1PH	Single phase fault and sequence like previous	
17	FLT17-3PH	 3 phase fault on the Spearville 230kV (539695) to 345kV (531469) transformer, near the 230 kV bus. a. Apply fault at the Spearville 230kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer. 	
18	FLT18-1PH	Single phase fault and sequence like previous	
19	FLT19-3PH	 3 phase fault on the Spearville 230kV (539695) to 115kV (539694) transformer #2, near the 230 kV bus. a. Apply fault at the Spearville 230kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer. 	
20	FLT20-1PH	Single phase fault and sequence like previous	
21	FLT21-3PH	 3 phase fault on the Spearville (539695) to Mullergren (539679) 230kV line, near Spearville. a. Apply fault at the Spearville 230kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	
22	FLT22-1PH	Single phase fault and sequence like previous	

Cont. No.	Cont. Name	Description		
23	FLT23-3PH	 3 phase fault on the Mullergren (539679) to South Hays (530582) 230kV line, near Mullergren. a. Apply fault at the Mullergren 230kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
24	FLT24-1PH	Single phase fault and sequence like previous		
25	FLT25-3PH	 3 phase fault on the Mullergren (539679) to Circle (532871) 230kV line, near Mullergren. a. Apply fault at the Mullergren 230kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
26	FLT26-1PH	Single phase fault and sequence like previous		
27	FLT27-3PH	 3 phase fault on the Comanche (765341) to Medicine Lodge (765342) 345kV line, near Comanche. a. Apply fault at the Comanche 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
28	FLT28-1PH	Single phase fault and sequence like previous		
29	FLT29-3PH	 3 phase fault on the Comanche (765341) to Woodward (515375) 345kV line, near Comanche. a. Apply fault at the Comanche 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
30	FLT30-1PH	Single phase fault and sequence like previous		
31	FLT31-3PH	 3 phase fault on the GEN-2003-013 (560029) to Hitchland (523097) 345kV line, near GEN-2003-013. a. Apply fault at the GEN-2003-013 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
32	FLT32-1PH	Single phase fault and sequence like previous		
33	FLT33-3PH	 3 phase fault on the Hitchland (523097) to Woodward (515375) 345kV line, near Hitchland. a. Apply fault at the Hitchland 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
34	FLT34-1PH	Single phase fault and sequence like previous		
35	FLT35-3PH	 3 phase fault on the Knoll (530558) to Smoky Hills (530592) 230kV line, near Knoll. a. Apply fault at the Knoll 230kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
36	FLT36-1PH	Single phase fault and sequence like previous		

Cont. No.	Cont. Name	Description		
37	FLT37-3PH	 3 phase fault on the Spearville (531469) to Knoll (560004) 345kV line, near Spearville. a. Apply fault at the Spearville 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
38	FLT38-1PH	Single phase fault and sequence like previous		
39	FLT39-3PH	 3 phase fault on the Knoll (560004) to Axtell (640065) 345kV line, near Knoll. a. Apply fault at the Knoll 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
40	FLT40-1PH	Single phase fault and sequence like previous		
41	FLT41-3PH	 3 phase fault on the Knoll 345kV (560004) to 230kV (530558) transformer, near the 345 kV bus. a. Apply fault at the Knoll 345kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer. 		
42	FLT42-1PH	Single phase fault and sequence like previous		
43	FLT43-3PH3 phase fault on the GEN-2008-079 (573029) to Cudahy (539659) 115kV line, 1 2008-079. a. Apply fault at the GEN-2008-079 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.			
44	FLT44-1PH	Single phase fault and sequence like previous		
45	FLT45-3PH	 3 phase fault on the GEN-2008-079 (573029) to Judson Large (539671) 115kV line, near GEN-2008-079. a. Apply fault at the GEN-2008-079 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
46	FLT46-1PH	Single phase fault and sequence like previous		
47FLT47-3PH3 phase fault on the GEN-2001-039A (10 GEN-2001-039A. a. Apply fault at the GEN-2001-039A 111 b. Clear fault after 5 cycles by tripping th c. Wait 20 cycles, and then re-close the li		3 phase fault on the GEN-2001-039A (103) to Judson Large (539671) 115kV line, near		
48	FLT48-1PH	Single phase fault and sequence like previous		
49	FLT49-3PH	 3 phase fault on the Cimarron Plant (539654) to Walkmeyer (531405) 115kV line, near Cimarron Plant. a. Apply fault at the Cimarron Plant 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
50	FLT50-1PH	Single phase fault and sequence like previous		

Cont. No.	Cont. Name	Description
51	FLT51-3PH	 3 phase fault on the Cimarron Plant (539654) to Hayne (539640) 115kV line, near Cimarron Plant. a. Apply fault at the Cimarron Plant 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
52	FLT52-1PH	Single phase fault and sequence like previous
53	FLT53-3PH	 3 phase fault on the Cimarron Plant (539654) to Seward (531467) 115kV line, near Cimarron Plant. a. Apply fault at the Cimarron Plant 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
54	FLT54-1PH	Single phase fault and sequence like previous
55	FLT55-3PH	 3 phase fault on the Spearville (539694) to North Judson Large (539771) 115kV line, near Spearville. a. Apply fault at the Spearville 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
56	FLT56-1PH	Single phase fault and sequence like previous

4. Results and Observations

4.1 Stability Analysis Results

All faults were run for both summer and winter peak conditions. If a previously-queued generator tripped for any of these faults, the voltage and frequency tripping was disabled, and the fault was re-run to check for system stability. No tripping occurred in this study.

Table 4-1 summarizes the overall results for all faults run. Figure 4-1 through Figure 4-7 show representative summer peak season plots for faults at the POIs for each of the study projects. Complete sets of plots for both summer and winter peak seasons for each fault and each wind project are included in Appendices A and B.

The Power Factor analysis in Section 4.3 shows that GEN-2008-124 will be required to install reactive power compensation devices to achieve 0.95 power factor lagging at the POI.

The system remains stable for all simulated faults. All study projects stay on-line for all simulated faults.

Cont. No.	Cont. Name	Description	Summer Peak Results	Winter Peak Results
1	FLT01-3PH	3 phase fault on the Finney (523853) to GEN-2003-013 (560029) 345kV line, near Finney.	OK	OK
2	FLT02-1PH	Single phase fault and sequence like previous	OK	OK
3	FLT03-3PH	3 phase fault on one of the Finney (523853) to Holcomb (531449) 345kV lines, near Finney.	OK	OK
4	FLT04-1PH	Single phase fault and sequence like previous	OK	OK
5	FLT05-3PH	3 phase fault on the Holcomb (531449) to Setab (531465) 345kV line, near Holcomb.	OK	OK
6	FLT06-1PH	Single phase fault and sequence like previous	OK	OK
7	FLT07-3PH	3 phase fault on the Holcomb (531449) to GEN-2007-040 (531000) 345kV line, near GEN-2007-040.	OK	OK
8	FLT08-1PH	Single phase fault and sequence like previous	OK	OK
9	FLT09-3PH	3 phase fault on the Holcomb 345kV (531449) to 115kV (531448) transformer, near the 345 kV bus.	OK	ОК
10	FLT10-1PH	Single phase fault and sequence like previous	OK	OK
11	FLT11-3PH	3 phase fault on the Spearville (531469) to GEN-2007-040 (531000) 345kV line, near GEN-2007-040.	OK	ОК
12	FLT12-1PH	Single phase fault and sequence like previous	OK	OK
13	FLT13-3PH	3 phase fault on the Spearville (531469) to Comanche (765341) 345kV line, near Spearville.	OK	ОК

Table 4-1.Summary of Stability Results

Cont. No.	Cont. Name	Description	Summer Peak Results	Winter Peak Results
14	FLT14-1PH	Single phase fault and sequence like previous	OK	OK
15	FLT15-3PH	3 phase fault on the Spearville 345kV (531469) to 230kV (539695) transformer, near the 345 kV bus.	OK	ОК
16	FLT16-1PH	Single phase fault and sequence like previous	OK	OK
17	FLT17-3PH	3 phase fault on the Spearville 230kV (539695) to 345kV (531469) transformer, near the 230 kV bus.	OK	ОК
18	FLT18-1PH	Single phase fault and sequence like previous	OK	OK
19	FLT19-3PH	3 phase fault on the Spearville 230kV (539695) to 115kV (539694) transformer #2, near the 230 kV bus.	OK	ОК
20	FLT20-1PH	Single phase fault and sequence like previous	OK	OK
21	FLT21-3PH	3 phase fault on the Spearville (539695) to Mullergren (539679) 230kV line, near Spearville.	OK	ОК
22	FLT22-1PH	Single phase fault and sequence like previous	OK	OK
23	FLT23-3PH	3 phase fault on the Mullergren (539679) to South Hays (530582) 230kV line, near Mullergren.	OK	ОК
24	FLT24-1PH	Single phase fault and sequence like previous	OK	ОК
25	FLT25-3PH	3 phase fault on the Mullergren (539679) to Circle (532871) 230kV line, near Mullergren.	OK	ОК
26	FLT26-1PH	Single phase fault and sequence like previous	OK	OK
27	FLT27-3PH	3 phase fault on the Comanche (765341) to Medicine Lodge (765342) 345kV line, near Comanche.	OK	ОК
28	FLT28-1PH	Single phase fault and sequence like previous	OK	OK
29	FLT29-3PH	3 phase fault on the Comanche (765341) to Woodward (515375) 345kV line, near Comanche.	OK	ОК
30	FLT30-1PH	Single phase fault and sequence like previous	OK	OK
31	FLT31-3PH	3 phase fault on the GEN-2003-013 (560029) to Hitchland (523097) 345kV line, near GEN-2003-013.	OK	ОК
32	FLT32-1PH	Single phase fault and sequence like previous	OK	OK
33	FLT33-3PH	3 phase fault on the Hitchland (523097) to Woodward (515375) 345kV line, near Hitchland.	OK	ОК
34	FLT34-1PH	Single phase fault and sequence like previous	OK	OK
35	FLT35-3PH	3 phase fault on the Knoll (530558) to Smoky Hills (530592) 230kV line, near Knoll.	OK	ОК
36	FLT36-1PH	Single phase fault and sequence like previous	OK	OK
37	FLT37-3PH	3 phase fault on the Spearville (531469) to Knoll (560004) 345kV line, near Spearville.	OK	ОК
38	FLT38-1PH	Single phase fault and sequence like previous	OK	OK
39	FLT39-3PH	3 phase fault on the Knoll (560004) to Axtell (640065) 345kV line, near Knoll.	OK	ОК
40	FLT40-1PH	Single phase fault and sequence like previous	OK	OK

Cont. No.	Cont. Name	Description	Summer Peak Results	Winter Peak Results
41	FLT41-3PH	3 phase fault on the Knoll 345kV (560004) to 230kV (530558) transformer, near the 345 kV bus.	OK	ОК
42	FLT42-1PH	Single phase fault and sequence like previous	OK	OK
43	FLT43-3PH	3 phase fault on the GEN-2008-079 (573029) to Cudahy (539659) 115kV line, near GEN-2008-079.	OK	ОК
44	FLT44-1PH	Single phase fault and sequence like previous	OK	OK
45	FLT45-3PH	3 phase fault on the GEN-2008-079 (573029) to Judson Large (539671) 115kV line, near GEN-2008-079.	OK	ОК
46	FLT46-1PH	Single phase fault and sequence like previous	OK	OK
47	FLT47-3PH	3 phase fault on the GEN-2001-039A (103) to Judson Large (539671) 115kV line, near GEN-2001-039A.	ОК	ОК
48	FLT48-1PH	Single phase fault and sequence like previous	OK	OK
49	FLT49-3PH	3 phase fault on the Cimarron Plant (539654) to Walkmeyer (531405) 115kV line, near Cimarron Plant.	OK	ОК
50	FLT50-1PH	Single phase fault and sequence like previous	OK	OK
51	FLT51-3PH	3 phase fault on the Cimarron Plant (539654) to Hayne (539640) 115kV line, near Cimarron Plant.	OK	ОК
52	FLT52-1PH	Single phase fault and sequence like previous	OK	OK
53	FLT53-3PH	3 phase fault on the Cimarron Plant (539654) to Seward (531467) 115kV line, near Cimarron Plant.	ОК	ОК
54	FLT54-1PH	Single phase fault and sequence like previous	OK	OK
55	FLT55-3PH	3 phase fault on the Spearville (539694) to North Judson Large (539771) 115kV line, near Spearville.	OK	ОК
56	FLT56-1PH	Single phase fault and sequence like previous	OK	OK

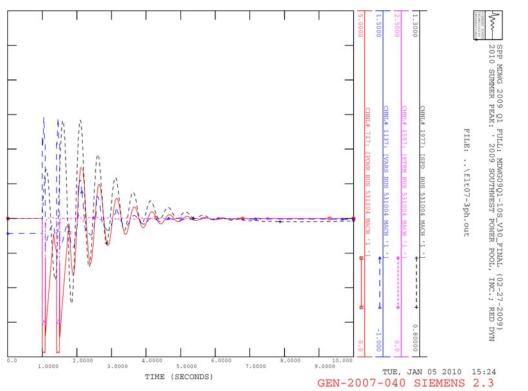


Figure 4-1. GEN-2007-040 Plot for Fault 7 – 3-Phase Fault on the Holcomb to GEN-2007-040 345 kV line, near GEN-2007-040

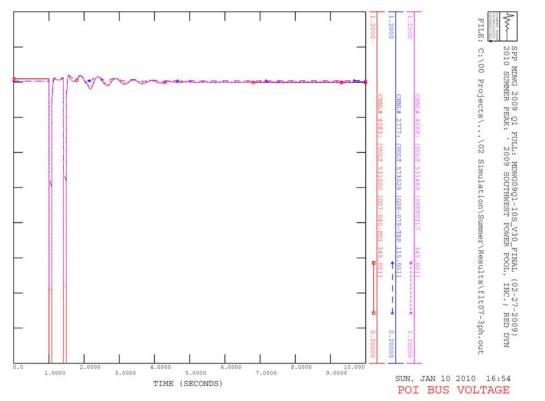


Figure 4-2. POI Voltages Plot for Fault 7 – 3-Phase Fault on the Holcomb to GEN-2007-040 345 kV line, near GEN-2007-040

Excel Engineering, Inc.

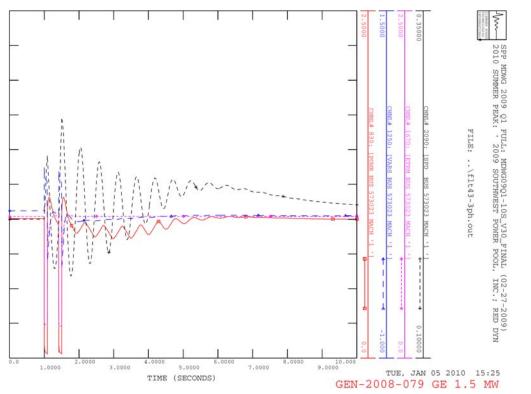


Figure 4-3. GEN-2008-079 Plot for Fault 43 – 3-Phase Fault on the GEN-2008-079 to Cudahy 115 kV line, near GEN-2008-079

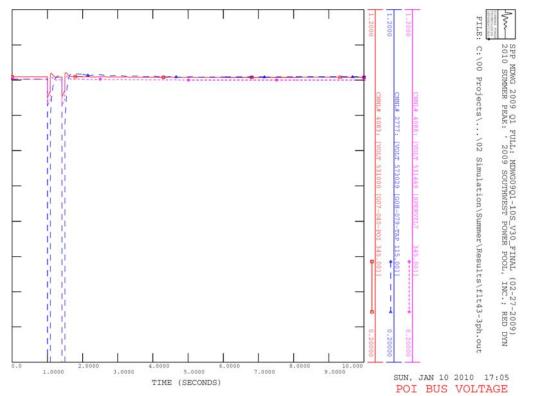


Figure 4-4. POI Voltages Plot for Fault 43 – 3-Phase Fault on the GEN-2008-079 to Cudahy 115 kV line, near GEN-2008-079

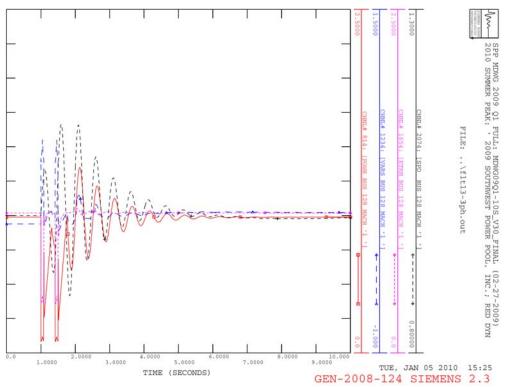


Figure 4-5. GEN-2008-124 (Unit 1) Plot for Fault 13 – 3-Phase Fault on the Spearville to Comanche 345 kV line, near Spearville

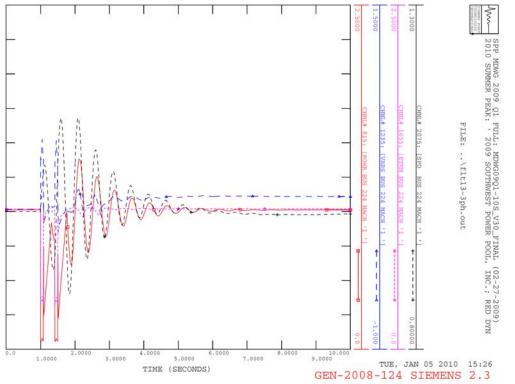


Figure 4-6. GEN-2008-124 (Unit 2) Plot for Fault 13 – 3-Phase Fault on the Spearville to Comanche 345 kV line, near Spearville

Excel Engineering, Inc.

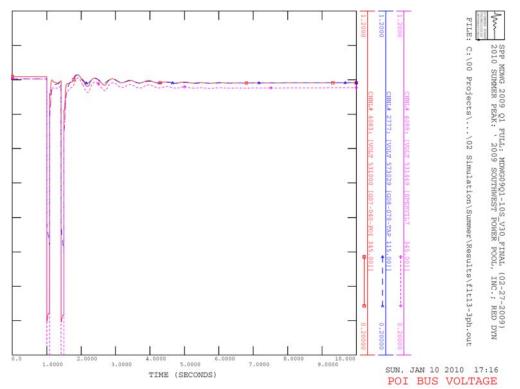


Figure 4-7. POI Voltages Plot for Fault 13 – 3-Phase Fault on the Spearville to Comanche 345 kV line, near Spearville

4.2 Generator Performance

All the study projects and prior-queued projects perform well for all faults, with no tripping evident.

4.3 Power Factor Requirements

All stability faults were tested as power flow contingencies to determine the power factor requirements for the wind farm study projects to maintain scheduled voltage at their respective points of interconnection (POI). The voltage schedules are set equal to the voltages at the POIs before the projects are added, with a minimum of 1.0 per unit. Fictitious reactive power sources were added to the study projects to maintain scheduled voltage during all studied contingencies. The MW and Mvar injections from the study projects at the POIs were recorded and the resulting power factors were calculated for all contingencies for summer peak and winter peak cases. The most leading and most lagging power factors determine the minimum power factor range capability that the study projects must install before commercial operation.

If more than one study project shared a single POI (none in this case), the projects were grouped together and a common power factor requirement was determined for those study projects. This ensures that none of the study projects is required to provide more or less than its fair share of the reactive power requirements at a single POI. *Prior-queued* projects at the same POI, if any, were not grouped with the study projects because their interconnection requirements were determined in previous studies.

Per FERC and SPP Tariff requirements, if the power factor needed to maintain scheduled voltage were less than 0.95 lagging, then the requirement would be set to 0.95 lagging. This limit was reached for GEN-2008-124. Much greater reactive power supply would be needed to meet the voltage schedules under some contingencies, but only 0.95 lagging will be required. The limit for leading power factor requirement is also 0.95, but this level was not reached for any project.

The proposed DISIS-2009-001 Group 3 projects cause heavy loading on the 345 kV line from Spearville to Comanche. This results in large reactive power consumption by this line and large reactive power injections needed by GEN-2008-124 to maintain voltage schedule, as low as 0.622 power factor during outage of the 345 kV line from Spearville to Knoll.

The final power factor requirements are shown in Table 4-2 below. These are only the minimum power factor ranges. A project developer may install more capability than this if desired.

The full details for each contingency in summer and winter peak cases are given in Appendix C.

	MW	Turbine	POI	Final PF Requirement	
Project				Lagging ²	Leading ³
GEN-2007-040	200	Siemens 2.3MW	Holcomb – Spearville 345kV line	0.976	0.956
GEN-2008-079	100.5	G.E. 1.5 MW	Tap Cudahy – Judson Large 115kV line	1.0	0.960
GEN-2008-124	200	Siemens 2.3MW	Spearville 345kV bus	0.950	1.0

Table 4-2. Power Factor Requirements ¹

Notes:

- 1. For each plant, the table shows the minimum required power factor capability at the point of interconnection that must be designed and installed with the wind farm. The power factor capability at the POI includes the net effect of the wind turbine generators, transformer and collector line impedances, and any reactive compensation devices installed on the plant side of the meter. Installing more capability than the minimum requirement is acceptable.
- 2. Lagging is when the generating plant is supplying reactive power to the transmission grid. In this situation, the alternating current sinusoid "lags" behind the alternating voltage sinusoid, meaning that the current peaks shortly after the voltage.
- 3. Leading is when the generating plant is taking reactive power from the transmission grid. In this situation, the alternating current sinusoid "leads" the alternating voltage sinusoid, meaning that the current peaks shortly before the voltage.

5. Conclusions

The DISIS-2009-001 Group 3 Definitive Impact Study evaluated the impacts of interconnecting the project shown below.

Tuble e 11 Inter connection Requests L'unuted							
Request	Size (MW)	Wind Turbine Model	Point of Interconnection				
GEN-2007-040	200	Siemens 2.3MW	Holcomb (531449) – Spearville (531469) 345kV. Bus # 531000				
GEN-2008-079	100.5	G.E. 1.5 MW	Tap Cudahy (539659) – Judson Large (539671) 115kV. Bus # 573029				
GEN-2008-124	200	Siemens 2.3MW	Spearville (531469) 345kV				

 Table 5-1.
 Interconnection Requests Evaluated

No stability problems were found during summer or winter peak conditions due to the addition of these generators.

Power factor requirements were determined, and all study plants must install sufficient reactive power resources to meet these requirements listed in Table 4-2. The reactive power resources need not be dynamically controlled. However, any change in wind turbine model or controls could change the stability results, possibly resulting in a need for a dynamically controlled reactive power supply.

With the assumptions described in this report, DISIS-2009-001 Group 3 should be able to connect without causing any stability problems on the SPP transmission grid.

Appendix A – Summer Peak Plots

Appendix B – Winter Peak Plots

Appendix C – Power Factor Details

Appendix D – Project Model Data

L: Stability Study for Group 4

L-1

Definitive Interconnection System Impact Study for Grouped Generation Interconnection Requests - (DISIS-2009-001)

Pterra Consulting

Technical Report R104-10

Impact Study for Generation Interconnection Request DISIS-2009-001 (Group 4)

Submitted to Southwest Power Pool January 2010 This page intentionally left blank

Contents

Section 1. Introduction	2
1.1. Project Overview 1.2. Objectives	2 3
Section 2. Power Factor Analysis	4
2.1. Methodology2.2. Analysis2.3. Conclusions	4 4 6
Section 3. Stability Analysis	7
 3.1. Modeling of the Siemens 2.3 MW Wind Turbine Generators	7 8
Section 4. Conclusions	16

Legal Notice

This report was prepared by Pterra, LLC as an account of work undertaken under the authorization of Southwest Power Pool. Pterra, LLC and Southwest Power Pool do not:

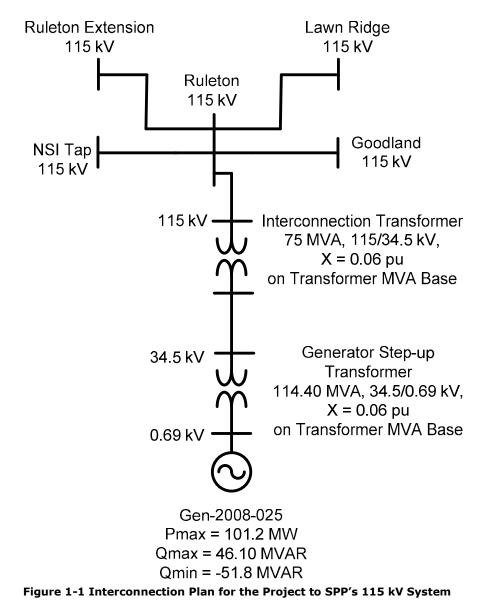
- 1. Make any warranty or representation, expressed or implied, with respect to the use of any information contained in this report, or that the use of any information, apparatus, method, or process disclosed in the report may not infringe privately owned rights.
- 2. Assume any liabilities with respect to the use of or for damage resulting from the use of any information, apparatus, method, or process disclosed in this report.

The report is confidential and proprietary to Pterra, LLC and Southwest Power Pool and may not be copied, duplicated, or loaned or transferred to a third party without the express written permission of Pterra, LLC or Southwest Power Pool.

Copyright© 2010 Pterra, LLC and Southwest Power Pool. All rights reserved

This report presents the impact study comprising of power factor and stability simulation of the proposed interconnection of DISIS-2009-001 (Group 4) consisting of Gen-2008-025 (the "Project"). The Project has a nominal maximum rating of 101 MW using Siemens 2.3 MW wind turbine generators ("WTGs"). The Point of Interconnection ("POI") of the Project is Ruleton 115 kV substation.

The analysis was conducted through the Southwest Power Pool ("SPP") Tariff. Power factor analysis and transient stability simulations were conducted with the Project in service at full output of 101 MW.


Two base cases, 2010 summer and 2009 winter conditions, each comprising of a power flow and corresponding dynamics database, were provided by SPP.

The results of the Power Factor analysis showed that with the study Project must maintain a power factor range in which they are supplying or absorbing vars at the point of interconnection in accordance with the requirements in Section 2.

Forty-six (46) disturbances were considered for the transient stability simulations which included 3-phase faults, as well as, 1-phase to ground faults, at the locations defined by SPP. The Siemens WTGs were modeled with voltage and frequency ride through protection set to manufacturer default settings. The results of the simulations showed no angular or voltage instability problems for the 46 disturbances. The study finds that the interconnection of the proposed 101 MW Project does not impact stability performance of the SPP system for the contingencies tested on the supplied base cases.

1.1. Project Overview

This report presents the impact study comprising of power factor and stability simulation of the proposed interconnection of DISIS-2009-001 (Group 4) consisting of Gen-2008-025 (the "Project"). The Project has a nominal maximum rating of 101 MW using Siemens 2.3 MW wind turbine generators ("WTGs"). The Project's Point of Interconnection ("POI") is Ruleton 115 kV substation. Figure 1-1 shows a conceptual interconnection diagram of the Project to the 115 kV transmission network.

To simplify the model of the wind farm while capturing the effect of the different impedances of cables (due to change of the conductor size and length), the wind turbines connected to the same 34.5 kV feeder end points were aggregated into one equivalent unit. An equivalent impedance of that feeder was represented by taking the equivalent series impedances of the different feeders connecting the wind turbines. SPP modeled the proposed 101 MW wind farm in the provided power flow cases with one (1) equivalent unit as shown in Figure 1-1. Table 1-1 shows a list of the prior queued projects that are included in the base case.

Request	Size	Wind Turbine Model	Point of Interconnection
GEN-2001-039M	99	Vestas V90 3.0MW	Leoti – City Services 115kV
GEN-2006-034	81	GE 1.5 MW	Kanardo – Sharon Springs 115kV
GEN-2006-040	108	Acciona 1.5 MW	Mingo 115kV
GEN-2007-011	135	Acciona 1.5 MW	Syracuse 115kV
GEN-2007-013	100	GE 1.5 MW	Selkirk 115kV
GEN-2008-017	300	GE 1.5 MW	Setab 345kV

Table 1-1 List of Prior Queued Projects

1.2. Objectives

The objectives of the study are to conduct power factor analysis and to determine the impact on system stability of interconnecting a proposed 101 MW wind farm to SPP's transmission system.

2.1. Methodology

Power factor analysis was conducted for the Project using a methodology which is summarized as follows:

- 1. Model a VAR generator at the Project's 115 kV bus. The VAR generator is set to hold a voltage schedule at the POI consistent with the voltage schedule in the provided power flow cases for summer and winter or 1.0 pu voltage (whichever is higher).
- 2. Steady state contingency analysis is conducted to determine the power factor necessary at the POI for each contingency.
- 3. According to the contingency analysis results, determine whether capacitors are required for the Project or not.
- 4. If the required power factor at the POI is beyond the capability of the studied wind turbines to meet (at the POI) capacitor banks are considered. The preference is to locate the capacitance banks is on the 34.5 kV Customer side. Factors to sizing capacitor banks include:
 - 4.1. The ability of the wind farm to meet FERC Order 661A (low voltage ride through) with and without capacitor banks.
 - 4.2. The ability of the wind farm to meet FERC Order 661A (wind farm recovery to pre-fault voltage).
 - 4.3. If wind farms trips on high voltage, power factor lower than unity may be required.

2.2. Analysis

A VAR generator was modeled in the provided power flow cases for summer and winter at the POI. The VAR generator was set to hold a voltage schedule at the POI consistent with the voltage schedule in the provided power flow cases for summer and winter. These values are 1.0056 pu and 1.006 pu, for summer and winter power flow cases respectively.

Contingency analysis was run for all the contingencies listed in the fault definition table (Table 3-4). A summary of the contingency analysis results, according to Table 2-1, for both summer and winter power flow cases are as follows:

• The loss of any branch in the contingency list showed that the VAR generator is either absorbing or delivering MVAR to the system to hold a voltage schedule at the POI consistent with the voltage schedule in the provided power flow cases for summer and winter.

• The results of the Power Factor analysis showed that with the study Project must maintain a power factor range in which they are supplying or absorbing vars at the point of interconnection in accordance with the requirements in Section 2.

Season	Contingency Description	Power	Factor	MW Injection of Project @ POI	MVAR @ POI
	BASE CASE	0.9999	Lag	-99.5	-1.1
	531465 Setab 345 531449 Holcomb 345 1	0.9928	Lag	-99.5	-12.0
	531465 Setab 345 531451 Mingo 345 1	0.9991	Lag	-99.5	-4.3
	531465 Setab 345 531464 Setab 115 1	0.9937	Lag	-99.5	-8.0
	531451 Mingo 345 640325 Red Willow 345 1	0.9962	Lag	-99.5	-8.7
	531451 Mingo 345 Mingo 531429 115 1	0.9920	Lag	-99.5	-12.7
	640183 Gentleman 345 640252 Keystone 345 1	1.0000	Lag	-99.5	-0.2
	640183 Gentleman 345 640374 Sweetwater 345 1	0.9999	Lag	-99.5	-1.0
	531449 Holcomb 345 531000 GEN_2007_40 345 1	0.9897	Lag	-99.5	-14.4
	531449 Holcomb 345 531448 Holcomb 115 1	0.9958	Lag	-99.5	-9.2
	523853 Finney 345 560029 GEN-2003-013 345 1	0.9995	Lag	-99.5	-3.0
10SP	531469 Spearville 345 560004 Knoll 345 1	0.9995	Lag	-99.5	-3.2
1036	531469 Spearville 345 765341 Comanche 345 1	1.0000	Lag	-99.5	-2.0
	531357 Ruleton 115 531356 NSI Tap 115 1	0.9924	Lead	-99.5	12.3
	531357 Ruleton 115 531368 Lawn Ridge 115 1	1.0000	Lead	-99.5	0.7
	531357 Ruleton 115 531443 Goodland 115 1	0.9985	Lag	-99.5	-5.5
	531438 Tribune Switch 115 531434 Selkirk 115 1	1.0000	Lag	-99.5	-0.5
	531439 Tribune Switch 115 531437 Syracuse 115 1	1.0000	Lead	-99.5	0.1
	531437 Syracuse 115 531440 Williamson 115 1	0.9864	Lag	-99.5	-16.6
	530554 Atwood 115 530555 Colby 115 1	0.9948	Lag	-99.5	-10.2
	531364 Atwood Switch 115 531367 Herndon 115 1	0.9975	Lead	-99.5	7.2
	531438 Tribune Switch 115 531431 Palmer 115 1	0.9956	Lag	-99.5	-9.4
	530555 Colby 115 530556 Hoxie 115 1	0.9994	Lag	-99.5	-3.5
	531429 Mingo 115 530559 Pheasant Run 115 1	1.0000	Lead	-99.5	0.6
	BASE CASE	1.0000	Lag	-99.5	-0.8
	531465 Setab 345 531449 Holcomb 345 1	0.9897	Lag	-99.5	-14.4
	531465 Setab 345 531451 Mingo 345 1	0.9993	Lag	-99.5	-3.6
	531465 Setab 345 531464 Setab 115 1	0.9911	Lag	-99.5	-6.1
	531451 Mingo 345 640325 Red Willow 345 1	0.9974	Lag	-99.5	-7.2
	531451 Mingo 345 Mingo 531429 115 1	0.9975	Lag	-99.5	-7.0
	640183 Gentleman 345 640252 Keystone 345 1	1.0000	Lag	-99.5	0.0
	640183 Gentleman 345 640374 Sweetwater 345 1	0.9999	Lag	-99.5	-1.0
09WP	531449 Holcomb 345 531000 GEN_2007_40 345 1	0.9924	Lag	-99.5	-12.3
0900	531449 Holcomb 345 531448 Holcomb 115 1	0.9948	Lag	-99.5	-10.2
	523853 Finney 345 560029 GEN-2003-013 345 1	0.9998	Lag	-99.5	-2.1
	531469 Spearville 345 560004 Knoll 345 1	0.9995	Lag	-99.5	-3.2
	531469 Spearville 345 765341 Comanche 345 1	0.9995	Lag	-99.5	-2.1
	531357 Ruleton 115 531356 NSI Tap 115 1	0.9943	Lead	-99.5	10.7
	531357 Ruleton 115 531368 Lawn Ridge 115 1	1.0000	Lag	-99.5	-0.9
	531357 Ruleton 115 531443 Goodland 115 1	0.9995	Lag	-99.5	-3.1
	531438 Tribune Switch 115 531434 Selkirk 115 1	1.0000	Lag	-99.5	-0.3
	531439 Tribune Switch 115 531437 Syracuse 115 1	1.0000	Lead	-99.5	1.7

Season	Contingency Description	Power	Factor	MW Injection of Project @ POI	MVAR @ POI
	531437 Syracuse 115 531440 Williamson 115 1	0.9830	Lag	-99.5	-18.6
	530554 Atwood 115 530555 Colby 115 1	0.9964	Lag	-99.5	-8.5
	531364 Atwood Switch 115 531367 Herndon 115 1	0.9982	Lead	-99.5	7.5
	531438 Tribune Switch 115 531431 Palmer 115 1	0.9917	Lag	-99.5	-12.9
	530555 Colby 115 530556 Hoxie 115 1	0.9989	Lag	-99.5	-4.7
	531429 Mingo 115 530559 Pheasant Run 115 1	1.0000	Lead	-99.5	0.1

2.3. Conclusions

The results of the Power Factor analysis showed that with the study Project must maintain a power factor range in which they are supplying or absorbing vars at the point of interconnection in accordance with the requirements in Section 2.

3.1. Modeling of the Siemens 2.3 MW Wind Turbine Generators

For the stability simulations, the Siemens 2.3 MW wind turbine generators were modeled using the provided Siemens 2.3 MW wind turbine dynamic model set. Table 3-1 shows the data for Siemens 2.3 MW WTG.

Parameter	Value		
Base kV	0.69		
WTG MBASE	2.30		
Transformer MBASE	2.60		
Transformer R on Transformer Base	0.0084		
Transformer X on Transformer Base	0.0600		
Transformer Tap	1.00		
Pmax (MW)	2.30		

Table 3-1 Siemens 2.3 MW Wind Turbine Generator Data

The Siemens WTGs have ride-through capability for voltage and frequency. Detailed ride through relays' manufacturer settings are shown in Table 3-2 and Table 3-3.

Table 3-2 Over/Under Frequency Relay Settings for Siemens 2.3 MW

Frequency Settings in Per Unit	Time Setting (s)	Relay Activation Time (s)
0.95	10.0	0.0
0.94	0.10	0.0
1.04	0.10	0.0

Voltage Settings	Time	Relay Activation
in Per Unit	Setting (s)	Time (s)
0.90	3.00	0.10
0.70	2.40	0.10
0.15	0.10	0.050
0.85	0.075	0.00
1.10	1.00	0.00
1.20	0.20	0.00

3.2. Assumptions

The following assumptions were adopted for the dynamic simulations:

- 1. Constant maximum and uniform wind speed for the entire period of study.
- 2. Wind turbine control models with their default values.
- 3. Under/over voltage/frequency protection use manufacturer settings.

3.3. Faults Simulated

Forty-six (46) faults were considered for the transient stability simulations which included three phase faults, as well as single phase line faults, at the locations defined by SPP. Single-phase line faults were simulated by applying a fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP's current practice. Prior queued projects shown in Table 1-1 and units in areas 520, 524, 525, 526, 531, 534, 536, 640, 645, and 650 were monitored in the simulations. Table 3-4 shows the list of simulated contingencies. The table also shows the fault clearing time and the time delay before re-closing for all the study contingencies.

Cont. No.	Cont. Name	Description
1	FLT01-3PH	 3 phase fault on the Setab (531465) to Holcomb (531449) 345kV line, near Setab. a. Apply fault at the Setab 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
2	FLT02-1PH	Single phase fault and sequence like previous
3	FLT03-3PH	 3 phase fault on the Setab (531465) to Mingo (531451) 345kV line, near Setab. a. Apply fault at the Setab 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
4	FLT04-1PH	Single phase fault and sequence like previous
5	FLT05-3PH	 3 phase fault on the Setab 345kV (531465) to 115kV (531464) transformer, near the 345 kV bus. a. Apply fault at the Setab 345kV bus. 531259 b. Clear fault after 5 cycles by tripping the faulted transformer.
6	FLT06-1PH	Single phase fault and sequence like previous
7	FLT07-3PH	 3 phase fault on the Mingo (531451) to Red Willow (640325) 345kV line, near Mingo. a. Apply fault at the Mingo 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
8	FLT08-1PH	Single phase fault and sequence like previous
9	FLT09-3PH	 3 phase fault on the Mingo 345kV (531451) to 115kV (531429) transformer, near the 345 kV bus. a. Apply fault at the Mingo 345kV bus. 531452 b. Clear fault after 5 cycles by tripping the faulted transformer.
10	FLT10-1PH	Single phase fault and sequence like previous
11	FLT11-3PH	 3 phase fault on the Gentleman (640183) to Keystone (640252) 345kV line, near Gentleman. a. Apply fault at the Gentleman 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.

Table 3-4 List of the Simulated Faults

Cont. No.	Cont. Name	Description
12	FLT12-1PH	Single phase fault and sequence like previous
13	FLT13-3PH	 3 phase fault on the Gentleman (640183) to Sweetwater (640374) 345kV line, near Gentleman. a. Apply fault at the Gentleman 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
14	FLT14-1PH	Single phase fault and sequence like previous
15	FLT15-3PH	 3 phase fault on the Holcomb (531449) to GEN-2007-040 (531000) 345kV line, near Holcomb. a. Apply fault at the Holcomb 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
16	FLT16-1PH	Single phase fault and sequence like previous
17	FLT17-3PH	 3 phase fault on the Holcomb 345kV (531449) to 115kV (531448) transformer, near the 345 kV bus. a. Apply fault at the Holcomb 345kV bus. 531450 b. Clear fault after 5 cycles by tripping the faulted transformer.
18	FLT18-1PH	Single phase fault and sequence like previous
19	FLT19-3PH	 3 phase fault on the Finney (523853) to GEN-2003-013 (560029) 345kV line, near Finney. a. Apply fault at the Finney 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. Single phase fault and sequence like previous
20	FLT20-1PH	
21	FLT21-3PH	 3 phase fault on the Spearville (531469) to Knoll (560004) 345kV line, near Spearville. a. Apply fault at the Spearville 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
22	FLT22-1PH	Single phase fault and sequence like previous
23	FLT23-3PH	 3 phase fault on the Spearville (531469) to Comanche (765341) 345kV line, near Spearville. a. Apply fault at the Spearville 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
24	FLT24-1PH	Single phase fault and sequence like previous
25	FLT25-3PH	 3 phase fault on the Ruleton (531357) to NSI Tap (531356) 115kV line, near Ruleton. a. Apply fault at the Ruleton 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
26	FLT26-1PH	Single phase fault and sequence like previous

Cont. No.	Cont. Name	Description
27	FLT27-3PH	 3 phase fault on the Ruleton (531357) to Lawn Ridge (531368) 115kV line, near Ruleton. a. Apply fault at the Ruleton 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
28	FLT28-1PH	Single phase fault and sequence like previous
29	FLT29-3PH	 3 phase fault on the Ruleton (531357) to Goodland (531443) 115kV line, near Ruleton. a. Apply fault at the Ruleton 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
30	FLT30-1PH	Single phase fault and sequence like previous
31	FLT31-3PH	 3 phase fault on the Tribune Switch (531438) to Selkirk (531434) 115kV line, near Tribune Switch. a. Apply fault at the Tribune Switch 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
32	FLT32-1PH	Single phase fault and sequence like previous
33	FLT33-3PH	 3 phase fault on the Tribune Switch (531438) to Syracuse (531437) 115kV line, near Tribune Switch. a. Apply fault at the Tribune Switch 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
34	FLT34-1PH	Single phase fault and sequence like previous
35	FLT35-3PH	 3 phase fault on the Syracuse (531437) –Williamson (531440) 115kV line, near Syracuse. a. Apply fault at the Syracuse 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
36	FLT36-1PH	Single phase fault and sequence like previous
37	FLT37-3PH	3 phase fault on the Atwood (530554) –Colby (530555) 115kV line, near Atwood. a. Apply fault at the Atwood 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
38	FLT38-1PH	Single phase fault and sequence like previous
39	FLT39-3PH	 3 phase fault on the Atwood Switch (531364) - Herndon (531367) 115kV line, near Atwood Switch a. Apply fault at the Atwood Switch115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
40	FLT40-1PH	Single phase fault and sequence like previous

Cont. No.	Cont. Name	Description
41	FLT39-3PH	 3 phase fault on the Tribune Switch (531438) - Palmer (531431) 115kV line, near Tribune a. Apply fault at the Tribune Switch 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
42	FLT40-1PH	Single phase fault and sequence like previous
43	FLT41-3PH	3 phase fault on the Colby (530555) – Hoxie (530556) 115kV line, near Colby a. Apply fault at the Colby b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
44	FLT42-1PH	Single phase fault and sequence like previous
45	FLT43-3PH	3 phase fault on the Mingo (531429) – Pheasant Run (530559) 115kV line, near Mingo a. Apply fault at the Mingo b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
46	FLT44-1PH	Single phase fault and sequence like previous

Simulations were performed with a 0.5-second steady-state run followed by the appropriate disturbance as described in Table 3-4. Simulations were run for a minimum 10-second duration to confirm proper machine damping.

3.4. Simulation Results

The simulations conducted in the study using the Siemens 2.3 MW WTGs did not result to any angular or voltage instability problems for the 46 disturbances. The study finds that the interconnection of the proposed 101 MW Project does not impact stability performance of the SPP system for the contingencies tested on the supplied base cases. Table 3-5 presents the results of the dynamic simulations.

-	Table 3-5 Results of the Simulated Faults	
Cont. No.	Description	Results for 10SP and 09WP
1	 3 phase fault on the Setab (531465) to Holcomb (531449) 345kV line, near Setab. a. Apply fault at the Setab 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
2	Single phase fault and sequence like previous	Stable

Table 3-5 Results of the Simulated Faults

Cont. No.	Description	Results for 10SP and 09WP
3	 3 phase fault on the Setab (531465) to Mingo (531451) 345kV line, near Setab. a. Apply fault at the Setab 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
4	Single phase fault and sequence like previous	Stable
5	 3 phase fault on the Setab 345kV (531465) to 115kV (531464) transformer, near the 345 kV bus. a. Apply fault at the Setab 345kV bus. 531259 b. Clear fault after 5 cycles by tripping the faulted transformer. 	Stable
6	Single phase fault and sequence like previous	Stable
7	 3 phase fault on the Mingo (531451) to Red Willow (640325) 345kV line, near Mingo. a. Apply fault at the Mingo 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
8	Single phase fault and sequence like previous	Stable
9	 3 phase fault on the Mingo 345kV (531451) to 115kV (531429) transformer, near the 345 kV bus. a. Apply fault at the Mingo 345kV bus. 531452 b. Clear fault after 5 cycles by tripping the faulted transformer. 	Stable
10	Single phase fault and sequence like previous	Stable
11	 3 phase fault on the Gentleman (640183) to Keystone (640252) 345kV line, near Gentleman. a. Apply fault at the Gentleman 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
12	Single phase fault and sequence like previous	Stable
13	 3 phase fault on the Gentleman (640183) to Sweetwater (640374) 345kV line, near Gentleman. a. Apply fault at the Gentleman 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
14	Single phase fault and sequence like previous	Stable

Cont. No.	Description	Results for 10SP and 09WP
15	 3 phase fault on the Holcomb (531449) to GEN-2007-040 (531000) 345kV line, near Holcomb. a. Apply fault at the Holcomb 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
16	Single phase fault and sequence like previous	Stable
17	 3 phase fault on the Holcomb 345kV (531449) to 115kV (531448) transformer, near the 345 kV bus. a. Apply fault at the Holcomb 345kV bus. 531450 b. Clear fault after 5 cycles by tripping the faulted transformer. 	Stable
18	Single phase fault and sequence like previous	Stable
19	 3 phase fault on the Finney (523853) to GEN-2003-013 (560029) 345kV line, near Finney. a. Apply fault at the Finney 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
20	Single phase fault and sequence like previous	Stable
21	 3 phase fault on the Spearville (531469) to Knoll (560004) 345kV line, near Spearville. a. Apply fault at the Spearville 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
22	Single phase fault and sequence like previous	Stable
23	 3 phase fault on the Spearville (531469) to Comanche (765341) 345kV line, near Spearville. a. Apply fault at the Spearville 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
24	Single phase fault and sequence like previous	Stable
25	 3 phase fault on the Ruleton (531357) to NSI Tap (531356) 115kV line, near Ruleton. a. Apply fault at the Ruleton 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
26	Single phase fault and sequence like previous	Stable

Cont. No.	Description	Results for 10SP and 09WP
27	 3 phase fault on the Ruleton (531357) to Lawn Ridge (531368) 115kV line, near Ruleton. a. Apply fault at the Ruleton 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
28	Single phase fault and sequence like previous	Stable
29	 3 phase fault on the Ruleton (531357) to Goodland (531443) 115kV line, near Ruleton. a. Apply fault at the Ruleton 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
30	Single phase fault and sequence like previous	Stable
31	 3 phase fault on the Tribune Switch (531438) to Selkirk (531434) 115kV line, near Tribune Switch. a. Apply fault at the Tribune Switch 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
32	Single phase fault and sequence like previous	Stable
33	 3 phase fault on the Tribune Switch (531438) to Syracuse (531437) 115kV line, near Tribune Switch. a. Apply fault at the Tribune Switch 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
34	Single phase fault and sequence like previous	Stable
35	 3 phase fault on the Syracuse (531437) -Williamson (531440) 115kV line, near Syracuse. a. Apply fault at the Syracuse 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
36	Single phase fault and sequence like previous	Stable

Cont. No.	Description	Results for 10SP and 09WP
37	 3 phase fault on the Atwood (530554) -Colby (530555) 115kV line, near Atwood. a. Apply fault at the Atwood 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
38	Single phase fault and sequence like previous	Stable
39	 3 phase fault on the Atwood Switch (531364) - Herndon (531367) 115kV line, near Atwood Switch a. Apply fault at the Atwood Switch115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
40	Single phase fault and sequence like previous	Stable
41	 3 phase fault on the Tribune Switch (531438) - Palmer (531431) 115kV line, near Tribune a. Apply fault at the Tribune Switch 115kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
42	Single phase fault and sequence like previous	Stable
43	 3 phase fault on the Colby (530555) - Hoxie (530556) 115kV line, near Colby a. Apply fault at the Colby b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
44	Single phase fault and sequence like previous	Stable
45	 3 phase fault on the Mingo (531429) - Pheasant Run (530559) 115kV line, near Mingo a. Apply fault at the Mingo b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 	Stable
46	Single phase fault and sequence like previous	Stable

The findings of the impact study for the proposed interconnection of DISIS-2009-001 (Group 4) consisting of project Gen-2008-025, considered 100% at the proposed 101 MW installed capacity, are:

- 1. The results of the Power Factor analysis showed that with the study Project must maintain a power factor range in which they are supplying or absorbing vars at the point of interconnection in accordance with the requirements in Section 2.
- Using Siemens 2.3 MW WTGs, the stability simulations for 46 specified test disturbances did not result to any angular or voltage instability problems in the SPP system. The study finds that the interconnection of the proposed 101 MW Project does not impact stability performance of the SPP system for the contingencies tested on the supplied base cases.

M: Stability Study for Group 5

M-1

Definitive Interconnection System Impact Study for Grouped Generation Interconnection Requests - (DISIS-2009-001)

R189-09

Generator Interconnection Impact Study for DISIS-2009-001 - Group 5 - Draft

Prepared for Southwest Power Pool, Inc.

Submitted by: Ravi Mulugu, Consultant

Draft Report: January 6, 2010

Siemens PTI Project Number: P/23-115068-B-1

Siemens Energy, Inc. Siemens Power Technologies International 400 State Street • P.O. Box 1058 Schenectady, New York 12301-1058 US Tel: 518-395-5000 • Fax: 518-346-2777 www.usa.siemens.com/PTI

This page intentionally left blank.

Contents

Legal N	lotice		i			
Section	n 1 Intro	duction	1-1			
1.1	Backg	round				
1.2	Purpos	se	1-1			
Section	n 2 Mod	el Development				
2.1	Power	Flow Data	2-1			
2.2	Stabilit	ty Database	2-1			
Section	n 3 Meth	nodology and Assumptions				
3.1	Metho	dology				
	3.1.1	Stability Simulations				
	3.1.2	Steady State Simulations				
3.2	Distur	bances for Stability Analysis				
Section	n 4 Anal	lysis Performed				
4.1	Steady	y State Performance				
4.2	Power	Factor Analysis				
4.3	Dynan	nic Results				
Section	n 5 Cone	clusions	5-1			
Append	W A xib	TG Single Line Diagrams	A-1			
A.1	GEN-2	2008-051	A-1			
Append	dix B W	TG Dynamic Models Documentation	B-1			
B.1	GEN-2	2008-051 – Siemens 2.3 MW	B-1			
Append	dix C St	eady State Results	C-1			
C.1	Summ	er Peak Voltage Analysis Results	C-1			
C.2	Winter	Winter Peak Voltage Analysis ResultsC-1				

Appendix D Stability ResultsD-		
D-1	Summer Peak Stability Results	D.1
D-1	Winter Peak Stability Results	D.2

Legal Notice

This document was prepared by Siemens Energy, Inc., Siemens Power Technologies International (Siemens PTI), solely for the benefit of Southwest Power Pool, Inc. Neither Siemens PTI, nor parent corporation or its or their affiliates, nor Southwest Power Pool, Inc., nor any person acting in their behalf (a) makes any warranty, expressed or implied, with respect to the use of any information or methods disclosed in this document; or (b) assumes any liability with respect to the use of any information or methods disclosed in this document.

Any recipient of this document, by their acceptance or use of this document, releases Siemens PTI, its parent corporation and its and their affiliates, and Southwest Power Pool, Inc. from any liability for direct, indirect, consequential or special loss or damage whether arising in contract, warranty, express or implied, tort or otherwise, and irrespective of fault, negligence, and strict liability. This page intentionally left blank.

Introduction

1.1 Background

Pursuant to the tariff and at the request of the Southwest Power Pool (SPP), Siemens PTI performed the following Impact Study to satisfy the Impact Study Agreement executed by the requesting customers and SPP for SPP Generation Interconnection request. The requests for interconnection were placed with SPP in accordance to SPP's Open Access Transmission Tariff, which covers new generation interconnections on SPP's transmission system.

The purpose of this report is to present the results of the stability and power factor analysis performed to evaluate the impact of the proposed GEN-2008-051 project on the Southwest Power Pool system. Eventual indicative solutions to the identified issues are proposed based on the impact of the project on the Southwest Power Pool system. Section 2 describes the proposed wind project in detail.

Transient stability analysis was performed using the package provide by SPP. It contains the latest stability database in PSS[®]E version 30.3.3. The stability package also includes the dynamic data for the previously queued projects.

1.2 Purpose

The steady state and stability study was carried out to:

- (a) Determine the ability of the proposed generation facility to remain in synchronism and within applicable planning standards following system faults with unsuccessful reclosing.
- (b) Determine the amount of transient support required from the costumer to meet the power factor requirement at the POI.
- (c) Determine the ability of the wind farm to meet FERC Order 661A (low voltage ride through and wind farm recovery to pre-fault voltage) with and without additional reactive support.

This page intentionally left blank.

Section

2

Model Development

The study has considered the 2010 Summer Peak and 2009 Winter Peak load flow models provided by SPP with the required interconnection generations modeled. The base cases also contain all the significant previous queued generation interconnection projects in the interconnection queue.

2.1 Power Flow Data

The Group 5 of DISIS-2009-001 contains one proposed wind generation project. Table 2-1 presents the size of the wind generation project, the Wind Turbine Generator (WTG) manufacturer, the reactive capability of the wind farm as well as the point of interconnection and the PSS[®]E bus number in the load flow models.

			Reactive Capability of Wind Farm			
Request	Size (MW)	Model	Max (MVAR)	Min (MVAR)	Point of Interconnection	Bus Number
GEN-2008-051	322	Siemens 2.3MW	155.95	-155.95	Potter 345kV	523961

The analysis was carried out using the database package provided by SPP which also includes the modeling data for the previously queued projects, as shown in Table 2-2:

Table 2-2 – Details of the Prior Queued Interconnection Requests

Request	Size (MW)	Model	Point of Interconnection	Bus Number
GEN-2002-022	240	Siemens 2.3MW	Bushland 230kV	524267
GEN-2004-003	240	GE 1.5MW	Conway 115kV	524079
GEN-2005-021	85.5	GE 1.5MW	Kirby 115kV	524088
GEN-2006-039	400	Clipper 2.5MW	Buffalo Lk 230kV	560009
GEN-2006-045	240	Suzlon 2.1MW	Buffalo Lk 230kV	560009
GEN-2006-047	240	Suzlon 2.1 MW	Buffalo Lk 230kV	560009

GEN-2007-002	160	Steam Turbine	Grapevine 115kV	523770
GEN-2007-008	300	Suzlon 2.1 MW	Grapevine 230kV	523771
GEN-2007-045	171	G.E. 1.5MW	Conway 115kV	524079
			Amarillo South –	
			Swisher 230kV	
GEN-2007-048	400	Furhlander	line	525228

Figures 2-1 and 2-2 present the surrounding area of the Group 5 point of interconnection, showing the line flows and voltage profile for the load flow models considered in the study for summer and winter peak scenarios, respectively.

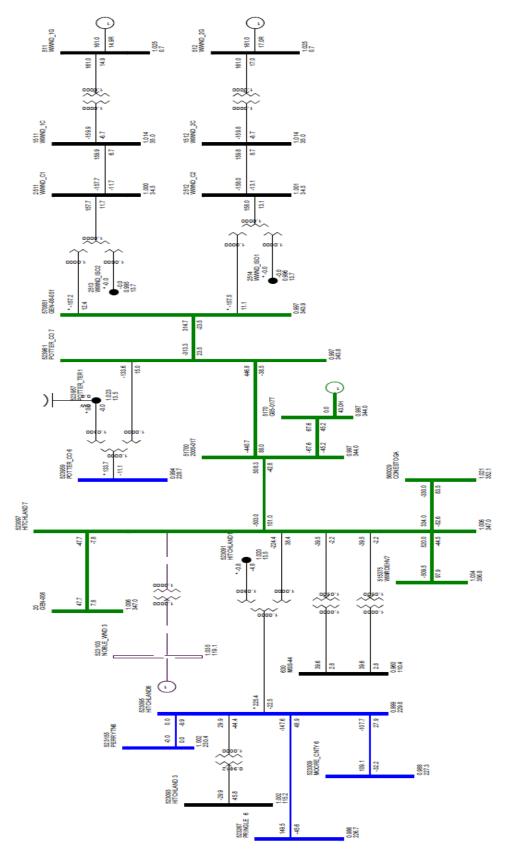


Figure 2-1 - Group 5 Point of Interconnection Surrounding Area – Summer Peak

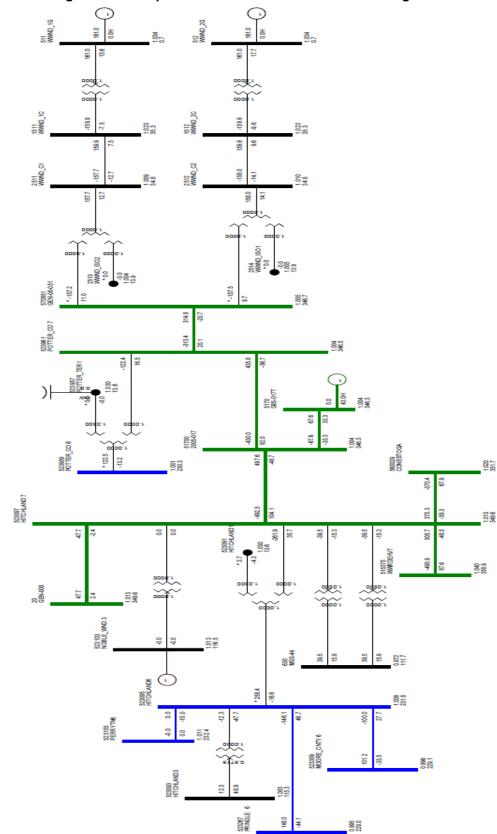


Figure 2-2 - Group 5 Points of Interconnection Surrounding Area – Winter Peak

Figure A-1 in Appendix A presents the single line diagram, showing the modeling details of the interconnecting project.

2.2 Stability Database

The transient stability analysis was performed using the data provided by SPP. Stability models for the Group 5 interconnection requests were already added to the dynamic database. All turbine parameters used in the simulation models are the default parameters in the wind turbine package. It is assumed that each wind turbine generators (WTGs) would be controlling the voltage of its own bus.

The default voltage protection model set points recommended by the manufacturer were used. The wind units were modeled with their built-in voltage ride through capability. Also, the default frequency protection model set points recommended by the manufacturer were used.

The PSS[®]E dynamic models output list is shown in Appendix B, documenting the model parameters for the Group 5 wind turbines modeled in the stability study.

Methodology and Assumptions

The study considered the 2010 summer peak and 2009 winter peak power flow cases with the required interconnection generation requests modeled as described in Section 2. The base case also contains all the significant previous queued projects in the interconnection queue.

The monitored areas in this study are shown in Table 3-1.

Area Number	Area Name
520	AEPW
524	OKGE
525	WFEC
526	SPS
531	MIDW
534	SUNC
536	WERE

Table 3-1 – Areas of Interest

3.1 Methodology

3.1.1 Stability Simulations

The dynamic simulations were performed using the PSS[®]E version 30.3.3 with the latest stability database provided by SPP. Three-phase faults and single-phase faults in the neighborhood of DISIS-2009-001 – Group 5 Point of interconnection were simulated. Any adverse impact on the system stability was documented and further investigated with appropriate solutions to determine whether a static or dynamic VAR device is required or not.

3.1.2 Steady State Simulations

3.1.2.1 N-1 Contingency Analysis

An N-1 contingency analysis was performed to evaluate voltage violations, if any, caused by disturbances (tripping of the faulted line). The voltages at each POI were monitored for deviations from the base case voltage and the percentage deviations were documented.

The summer peak and winter peak load flow cases were adjusted to ensure there are no relevant pre contingency voltage criteria violations. During contingency analysis, voltages of

any monitored bus found to be outside the range of the post-contingency criteria and having more than 1% of project impact were reported.

3.1.2.2 Power Factor Analysis

A QV analysis was performed to determine the reactive support requirement at the project's POI. QV curves, plotted for base case and contingency conditions, are used to determine the reactive power support required at Potter 345 kV POI, in order to maintain the bus scheduled pre contingency voltages.

These curves are obtained through a series of AC load flow calculations. Starting with no reactive support at a bus, the voltage is computed for a series of power flows as the reactive support is increased in steps, until the power flow experiences convergence difficulties as the system approaches the voltage collapse point.

3.2 Disturbances for Stability Analysis

The stability simulations considered three-phase (3PH) faults and single line-to-ground (SLG) faults. For all contingencies the fault complete clearing process includes the following sequence of events:

1) Line fault, cleared after 5 cycles by tripping the both line terminals

2) After 20 cycles the line is reclosed unsuccessfully (reclosing under fault conditions)

3) The fault is cleared by tripping both ends of the faulted line again, 5 cycles later.

The disturbances evaluated are listed in the following Table 3-2:

				1
#	Fault Location	Fault Type	Clearing	Fault Clearing
1	At Potter Co. end of 345kV line to GEN-2005-017	3PH	Unsuccessful Reclosing	trip Potter Co GEN-2005-017 345kV line
2	At Potter Co. end of 345kV line to GEN-2005-017	SLG	Unsuccessful Reclosing	trip Potter Co GEN-2005-017 345kV line
3	At GEN-2003-013 end of 345kV line to Hitchland	3PH	Unsuccessful Reclosing	trip GEN-2003-013 - Hitchland 345kV line
4	At GEN-2003-013 end of 345kV line to Hitchland	SLG	Unsuccessful Reclosing	trip GEN-2003-013 - Hitchland 345kV line
5	At 345kV end of Potter Co. 345/230 kV transformer	3PH	Unsuccessful Reclosing	trip Potter Co. 345/230 kV transformer
6	At 345kV end of Potter Co. 345/230 kV transformer	SLG	Unsuccessful Reclosing	trip Potter Co. 345/230 kV transformer
7	At Lawton Eastside end of 345kV line to Sunnyside	3PH	Unsuccessful Reclosing	trip Lawton Eastside - Sunnyside 345kV line

Table 3-2: Disturbances for Stability Analysis

8	At Lawton Eastside end of 345kV line to Sunnyside	SLG	Unsuccessful Reclosing	trip Lawton Eastside - Sunnyside 345kV line
9	At Grapevine end of 230kV line to Wheeler	3PH	Unsuccessful Reclosing	trip Grapevine - Wheeler 230kV line
10	At Grapevine end of 230kV line to Wheeler	SLG	Unsuccessful Reclosing	trip Grapevine - Wheeler 230kV line
11	At Tolk end of 230kV line to Tuco	3PH	Unsuccessful Reclosing	trip Tolk - Tuco 230kV line
12	At Tolk end of 230kV line to Tuco	SLG	Unsuccessful Reclosing	trip Tolk - Tuco 230kV line
13	At 230kV end of Tuco 345/230 kV transformer	3PH	Unsuccessful Reclosing	trip Tuco 230/345 kV transformer
14	At 230kV end of Tuco 345/230 kV transformer	SLG	Unsuccessful Reclosing	trip Tuco 230/345 kV transformer
15	At GEN-2005-015 end of 345kV line to Oklaunion	3PH	Unsuccessful Reclosing	trip GEN-2005-015 - Oklaunion 345kV line
16	At GEN-2005-015 end of 345kV line to Oklaunion	SLG	Unsuccessful Reclosing	trip GEN-2005-015 - Oklaunion 345kV line
17	At Oklaunion end of 345kV line to Lawton Eastside	3PH	Unsuccessful Reclosing	trip Oklaunion - Lawton Eastside 345kV line
18	At Oklaunion end of 345kV line to Lawton Eastside	SLG	Unsuccessful Reclosing	trip Oklaunion - Lawton Eastside 345kV line
19	At Grapevine end of 230kV line to Nichols	3PH	Unsuccessful Reclosing	trip Grapevine - Nichols 230kV line
20	At Grapevine end of 230kV line to Nichols	SLG	Unsuccessful Reclosing	trip Grapevine - Nichols 230kV line
21	At Conway end of 115kV line to Yarnell	3PH	Unsuccessful Reclosing	trip Conway - Yarnell 115kV line
22	At Conway end of 115kV line to Yarnell	SLG	Unsuccessful Reclosing	trip Conway - Yarnell 115kV line
23	At Conway end of 115kV line to Kirby	3PH	Unsuccessful Reclosing	trip Conway - Kirby 115kV line
24	At Conway end of 115kV line to Kirby	SLG	Unsuccessful Reclosing	trip Conway - Kirby 115kV line
25	At 230 kV end of Wheeler 345/230 kV transformer	3PH	Unsuccessful Reclosing	trip Wheeler 230/345 kV transformer
26	At 230 kV end of Wheeler 345/230 kV transformer	SLG	Unsuccessful Reclosing	trip Wheeler 230/345 kV transformer
27	At Wheeler/Midpoint end of 345kV line to Anadarko	3PH	Unsuccessful Reclosing	trip Wheeler/Midpoint - Anadarko 345kV line
28	At Wheeler/Midpoint end of 345kV line to Anadarko	SLG	Unsuccessful Reclosing	trip Wheeler/Midpoint - Anadarko 345kV line
29	At 115 kV end of Conway 345/115 kV transformer	3PH	Unsuccessful Reclosing	trip Conway 115/345 kV transformer
30	At 115 kV end of Conway 345/115 kV transformer	SLG	Unsuccessful Reclosing	trip Conway 115/345 kV transformer
31	At Conway end of 345kV line to Wheeler/Midpoint	3PH	Unsuccessful Reclosing	trip Conway - Wheeler/Midpoint 345kV line
32	At Conway end of 345kV line to Wheeler/Midpoint	SLG	Unsuccessful Reclosing	trip Conway - Wheeler/Midpoint 345kV line
33	At 230 kV end of Grapevine 230/115 kV transformer	3PH	Unsuccessful Reclosing	trip Grapevine 230/115 kV transformer

34	At 230 kV end of Grapevine 230/115 kV transformer	SLG	Unsuccessful Reclosing	trip Grapevine 230/115 kV transformer
35	At Tuco end of 345kV line to Wheeler/Midpoint	3PH	Unsuccessful Reclosing	trip Tuco - Wheeler/Midpoint 345kV line
36	At Tuco end of 345kV line to Wheeler/Midpoint	SLG	Unsuccessful Reclosing	trip Tuco - Wheeler/Midpoint 345kV line
37	At Wheeler/Midpoint end of 345kV line to Woodward	3PH	Unsuccessful Reclosing	trip Wheeler/Midpoint - Woodward 345kV line
38	At Wheeler/Midpoint end of 345kV line to Woodward	SLG	Unsuccessful Reclosing	trip Wheeler/Midpoint - Woodward 345kV line
39	At Kirby end of 115kV line to McClellan	3PH	Unsuccessful Reclosing	trip Kirby - McClellan 115kV line
40	At Kirby end of 115kV line to McClellan	SLG	Unsuccessful Reclosing	trip Kirby - McClellan 115kV line
41	At Potter end of 230kV line to Moore County	3PH	Unsuccessful Reclosing	trip Potter - Moore County 230kV line
42	At Potter end of 230kV line to Moore County	SLG	Unsuccessful Reclosing	trip Potter - Moore County 230kV line
43	At Potter end of 230kV line to Harrington West	3PH	Unsuccessful Reclosing	trip Potter - Harrington West 230kV line
44	At Potter end of 230kV line to Harrington West	SLG	Unsuccessful Reclosing	trip Potter - Harrington West 230kV line
45	At Potter end of 230kV line to Bushland	3PH	Unsuccessful Reclosing	trip Potter - Bushland 230kV line
46	At Potter end of 230kV line to Bushland	SLG	Unsuccessful Reclosing	trip Potter - Bushland 230kV line
47	At Potter end of 230kV line to GEN- 2006-039	3PH	Unsuccessful Reclosing	trip Potter - GEN-2006-039 230kV line
48	At Potter end of 230kV line to GEN- 2006-039	SLG	Unsuccessful Reclosing	trip Potter - GEN-2006-039 230kV line

In order to simulate single line to ground faults, equivalent reactances were determined to be applied at the buses. Table 3-3 presents the equivalent reactances obtained for the summer peak case and Table 3-4 presents the equivalent reactance for the winter peak case.:

BUS	Equivalent Reactance (Mvar)
523961	2400
560029	2600
511468	3800
523771	1800
525524	6800
525832	2800

BUS	Equivalent Reactance (Mvar)
560813	1900
511456	1600
524079	1400
525835	3200
560000	1400
525832	2800
525835	3200
524088	800
523959	4500
525830	3100
523777	2500

Table 3-4: Equivalent Reactances – Line to Ground Faults – Winter Peak

BUS	Equivalent Reactance (Mvar)
523961	2350
560029	2600
511468	3800
523771	1900
525524	5500
525832	2800
560813	1900
511456	1600
524079	1400
525835	3300
560000	1500
525832	2800
525835	3300

BUS	Equivalent Reactance (Mvar)
524088	800
523959	3950
525830	3000
523777	2700

The following Figures 3-1 and 3-2 present the fault locations within the study area.

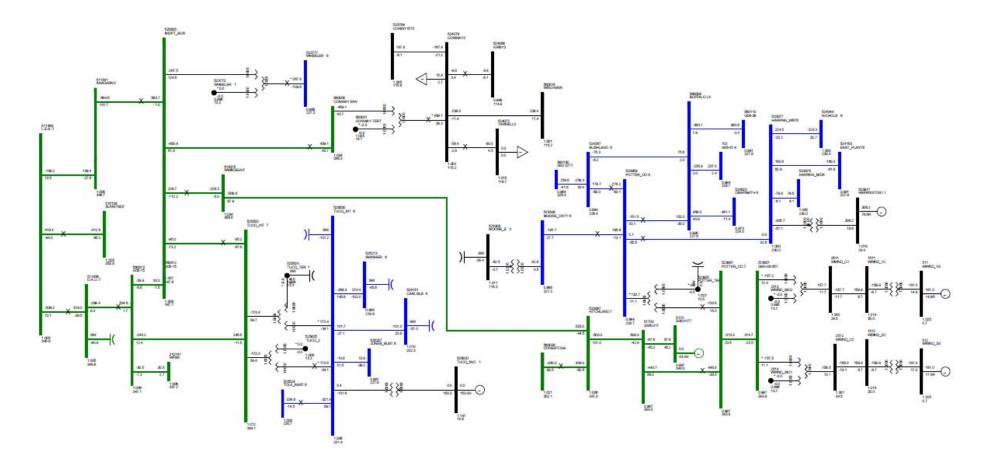


Figure 3-1 – Fault Locations in the Study Area – *Diagram1*

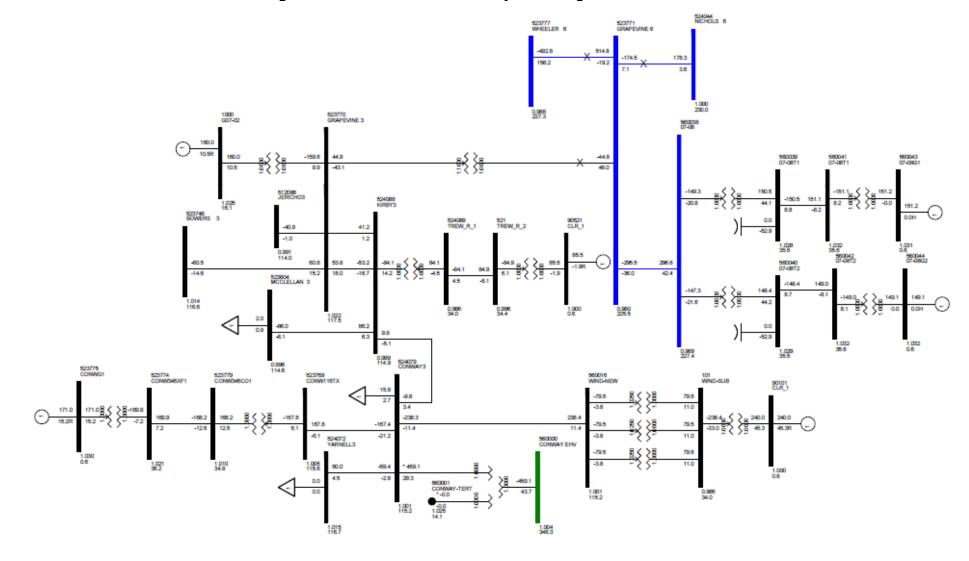


Figure 3-2 – Fault Locations in the Study Area – Diagram2

This page intentionally left blank.

Analysis Performed

4.1 Steady State Performance

Table 4-1 and Table 4-2 summarize the results obtained from the steady state analysis for Summer Peak and Winter Peak base cases, respectively. The tables list the voltage deviations at the Points of Interconnection of the proposed study projects of Group 5, as well as the prior queued projects. Note that only the contingencies that cause a voltage criterion violation or have an impact of at least 1% in the POI's voltages are listed.

The complete set of results for both summer peak and winter peak scenarios are presented in Appendix C.

		Base	Contingency	Base	
Bus #	Bus Name	kV	Voltage	Voltage	%Deviation
		Bas	e Case		
523770	GRAPEVINE 3	115.0	-	1.0216	_
523771	GRAPEVINE 6	230.0	-	0.9802	-
523961	POTTER_CO 7	345.0	_	0.9966	_
524079	CONWAY3	115.0	_	1.0014	_
524088	KIRBY3	115.0	_	0.9988	_
524267	BUSHLAND 6	230.0	_	0.9844	_
525228	07-048	230.0	_	0.9621	_
560009	BUFFALO LK	230.0	_	0.9896	_
		FI	LT 01		
523771	GRAPEVINE 6	230.0	0.9619	0.9802	-1.87%
		FI	LT 03		
523771	GRAPEVINE 6	230.0	0.9604	0.9802	-2.02%
524079	CONWAY3	115.0	0.9904	1.0014	-1.10%
FLT 05					
523961	POTTER_CO 7	345.0	1.0130	0.9966	1.65%
FLT 09					
523771	GRAPEVINE 6	230.0	0.9971	0.9802	1.72%

Table 4-1: Results Obtained – Steady State Analysis – Summer Peak Base Case

I.	1				1	
523961	POTTER_CO 7	345.0	0.9859	0.9966	-1.07%	
524079	CONWAY3	115.0	0.9750	1.0014	-2.64%	
524088	KIRBY3	115.0	0.9741	0.9988	-2.47%	
525228	07-048	230.0	0.9516	0.9621	-1.09%	
		FI	LT 15			
523771	GRAPEVINE 6	230.0	0.9645	0.9802	-1.60%	
		FI	LT 17			
523770	GRAPEVINE 3	115.0	1.0053	1.0216	-1.60%	
523771	GRAPEVINE 6	230.0	0.9447	0.9802	-3.62%	
523961	POTTER_CO 7	345.0	0.9844	0.9966	-1.22%	
524079	CONWAY3	115.0	0.9819	1.0014	-1.95%	
524088	KIRBY3	115.0	0.9777	0.9988	-2.11%	
		FI	LT 19			
523771	GRAPEVINE 6	230.0	1.0022	0.9802	2.24%	
		FI	LT 25			
523771	GRAPEVINE 6	230.0	0.9703	0.9802	-1.01%	
		FI	LT 29			
523770	GRAPEVINE 3	115.0	0.9851	1.0216	-3.57%	
523771	GRAPEVINE 6	230.0	0.9424	0.9802	-3.86%	
524079	CONWAY3	115.0	1.0184	1.0014	1.70%	
524088	KIRBY3	115.0	0.9676	0.9988	-3.12%	
		FI	LT 31			
523770	GRAPEVINE 3	115.0	0.9829	1.0216	-3.79%	
523771	GRAPEVINE 6	230.0	0.9352	0.9802	-4.59%	
524079	CONWAY3	115.0	1.0180	1.0014	1.66%	
524088	KIRBY3	115.0	0.9659	0.9988	-3.29%	
		FI	LT 33			
523770	GRAPEVINE 3	115.0	1.0017	1.0216	-1.95%	
523771	GRAPEVINE 6	230.0	1.0031	0.9802	2.34%	
524088	KIRBY3	115.0	0.9836	0.9988	-1.52%	
		FI	LT 35			
523771	GRAPEVINE 6	230.0	0.9664	0.9802	-1.41%	
FLT 37						
523771	GRAPEVINE 6	230.0	0.9702	0.9802	-1.02%	
	FLT 45					
524267	BUSHLAND 6	230.0	0.9570	0.9844	-2.78%	
560009	BUFFALO LK	230.0	0.9737	0.9896	-1.61%	

Bus #	Bus Name	Base kV	Contingency Voltage	Base Voltage	%Deviation	
		Ba	se Case			
523770	GRAPEVINE 3	115.0	-	1.0360	-	
523771	GRAPEVINE 6	230.0	-	1.0004	-	
523961	POTTER_CO 7	345.0	-	1.0042	-	
524079	CONWAY3	115.0	-	1.0173	-	
524088	KIRBY3	115.0	-	1.0115	-	
524267	BUSHLAND 6	230.0	_	1.0036	_	
525228	07-048	230.0	_	0.9810	_	
560009	BUFFALO LK	230.0	_	1.0166	_	
		E	TLT 01			
523771	GRAPEVINE 6	230.0	0.9850	1.0004	-1.54%	
523961	POTTER_CO 7	345.0	0.9916	1.0042	-1.25%	
524079	CONWAY3	115.0	1.0071	1.0173	-1.00%	
		E	FLT 03			
523771	GRAPEVINE 6	230.0	0.9838	1.0004	-1.66%	
524079	CONWAY3	115.0	1.0054	1.0173	-1.17%	
		E	TLT 05			
523961	POTTER_CO 7	345.0	1.0293	1.0042	2.50%	
		E	TLT 09			
524079	CONWAY3	115.0	0.9948	1.0173	-2.21%	
524088	KIRBY3	115.0	0.9877	1.0115	-2.35%	
		E	'LT 15			
523771	GRAPEVINE 6	230.0	0.9870	1.0004	-1.34%	
		E	'LT 17			
523770	GRAPEVINE 3	115.0	1.0216	1.0360	-1.39%	
523771	GRAPEVINE 6	230.0	0.9723	1.0004	-2.81%	
523961	POTTER_CO 7	345.0	0.9922	1.0042	-1.19%	
524079	CONWAY3	115.0	0.9971	1.0173	-1.99%	
524088	KIRBY3	115.0	0.9929	1.0115	-1.84%	
	FLT 19					
523771	GRAPEVINE 6	230.0	1.0335	1.0004	3.31%	
FLT 29						
523770	GRAPEVINE 3	115.0	1.0115	1.0360	-2.36%	
523771	GRAPEVINE 6	230.0	0.9758	1.0004	-2.46%	
524079	CONWAY3	115.0	1.0350	1.0173	1.74%	

Table 4-2: Results Obtained – Steady State Analysis – Winter Peak Base Case

524088	KIRBY3	115.0	0.9950	1.0115	-1.63%		
	FLT 31						
523770	GRAPEVINE 3	115.0	1.0097	1.0360	-2.54%		
523771	GRAPEVINE 6	230.0	0.9707	1.0004	-2.97%		
524079	CONWAY3	115.0	1.0348	1.0173	1.72%		
524088	KIRBY3	115.0	0.9937	1.0115	-1.76%		
		F	'LT 33				
523770	GRAPEVINE 3	115.0	1.0150	1.0360	-2.03%		
523771	GRAPEVINE 6	230.0	1.0231	1.0004	2.27%		
524088	KIRBY3	115.0	0.9969	1.0115	-1.44%		
	FLT 35						
523771	GRAPEVINE 6	230.0	0.9882	1.0004	-1.22%		

Although some contingencies cause voltage rise or drop equal to or greater than 0.01 p.u, the voltage profile of the POI's surrounding area remains within the limits. The exceptions are observed in the Summer Case where the voltage of the Grapevine 230 kV bus 523771 falls below 0.95 pu for contingencies FLT 17, FLT 29, and FLT 31.

The Group 5 projects have significant impact on the voltages of the buses monitored in the study system, either in base case conditions or under contingencies. However, no significant voltage criteria violations were identified through the simulations performed.

4.2 **Power Factor Analysis**

A QV analysis was performed to determine the amount of reactive support required to maintain the scheduled voltages at the Potter 345 kV point of interconnection. The contingencies described in Table 3-2 were evaluated in steady state conditions for summer and winter peak base cases, with variable Mvar injection at the POIs.

Table 4-3 presents the Mvar requirements and the associated power factor that the Wind Project must be able to provide under contingencies.

Table 4-3: Mvar Requirements and Power Factor at the POI for the Proposed
Projects Interconnection

Project	Point of Interconnection	V Scheduled (p.u)	Mvar Requirements at POI	Contingency	Power Factor at POI (lagging - supplying vars)
GEN-2008-051	Potter 345 kV	0.997	88 Mvar	FLT 17	0.9627

4.3 Dynamic Results

The stability analysis was carried out using both Summer Peak and Winter Peak load flow models.

In order to determine the impact of the project on the overall system dynamics as well as to determine the requirements to meet the FERC Order 661-A Guidelines, 48 contingencies listed in Table 3-2 were simulated. The results obtained are described in this sub-section.

Table 4-4 and Table 4-5 summarize the results obtained from the stability simulations for Summer Peak and Winter Peak base cases, respectively. Note that only the critical contingencies that lead to trips due to LVRT or loss of synchronism are listed.

Table 4-4: Results Obtained – Summer Peak Base Case

Name	Wind Projects Dynamic Performance
FLT11-3PH	GEN-2005-010 (560817 & 560818) tripped for low voltage at 0.6 s
FLT15-3PH	GEN-2005-015 (560811) tripped for low voltage at 0.633 s

Table 4-5: Results Obtained – Winter Peak Base Case

Name	Wind Projects Dynamic Performance
FLT11-3PH	GEN-2005-010 (560817 & 560818) tripped for low voltage at 0.6 s

The Gen-2008-051 project does not trip for any of the disturbances studied. The Gen-2005-010 project i.e. machines at bus 560817 and bus 560818 trips on low voltage for FLT-11 three phase fault. Since the project is an older project and is not in the current study group or interconnection queue, no further remediation solutions will be attempted. Similarly the Gen-2005-015 project i.e. Machine 1 at bus 560811 trips for low voltage in the Summer Peak case for FLT-15 three phase fault.

Conclusions

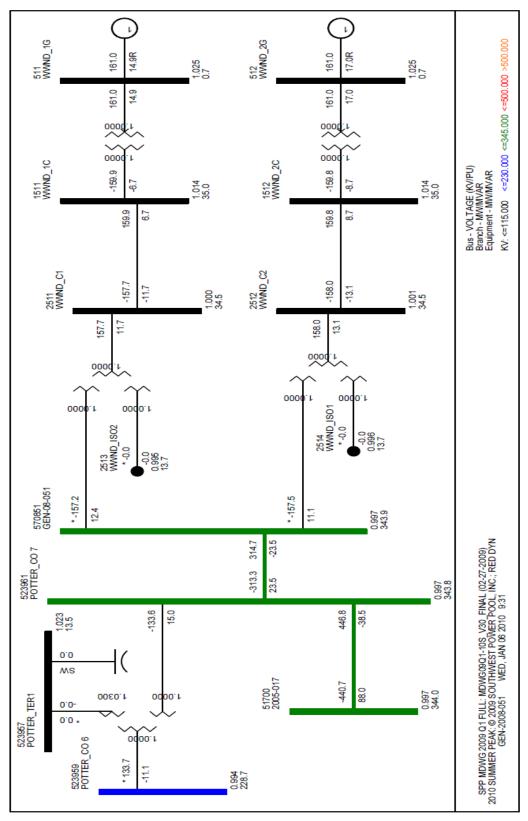
The Wind Project in Group 5 has been evaluated to determine the system requirements to meet the requirements associated with FERC Order 661-A Guidelines for Low Voltage Ride Through (LVRT) and therefore, for it to deliver its full power to the SPP transmission system.

Steady state and stability analysis were carried out to evaluate the system performance under contingencies

In general the Group 5 project has significant impact on the voltage profile of the monitored system, either in base case conditions or under contingencies. However, no significant voltage criteria violations were identified through the simulations performed.

The power factor analysis determined the amount of reactive support required to maintain the scheduled voltages at the Potter 345 kV point of interconnection.

The Group 5 project does not have an adverse impact on the stability of the SPP system, for the contingencies and system conditions tested.


This page intentionally left blank.

WTG Single Line Diagrams

This appendix contains the single line diagram, showing the modeling details of the Group 5 project.

A.1 GEN-2008-051

WTG Dynamic Models Documentation

This appendix shows the model data used to represent the turbines in the simulations.

This page intentionally left blank.

Steady State Results

This Appendix shows the voltage analysis results. The voltages at each POI were monitored for any deviations from the base case voltage and the percentage voltage deviations were documented.

This page intentionally left blank.

Stability Results

The plots of the evaluated contingencies are shown in this appendix. There are 4 plots for each contingency, which include the following channels:

- Bus Voltages.
- Speed Deviation.
- Active and Reactive Power Injection at the POI
- Electric Power of the Proposed WTGs

D.1 Summer Peak Stability Results

D.2 Winter Peak Stability Results

N: Stability Study for Group 6

N-1

Definitive Interconnection System Impact Study for Grouped Generation Interconnection Requests - (DISIS-2009-001)

O: Stability Study for Group 7

O-1

Definitive Interconnection System Impact Study for Grouped Generation Interconnection Requests - (DISIS-2009-001)

SPP DISIS-2009-001 Group 7 Definitive Impact Study

Draft Report for

Southwest Power Pool

Prepared by: Excel Engineering, Inc.

January 19, 2010

Principal Contributor:

William Quaintance, P.E.

TABLE OF CONTENTS

LIST OF FIGURES	3
LIST OF TABLES	3
0. CERTIFICATION	4
1. BACKGROUND AND SCOPE	5
2. EXECUTIVE SUMMARY	7
3. STUDY DEVELOPMENT AND ASSUMPTIONS	B
3.1 Simulation Tools	
3.2 Models Used	
3.3 Monitored Facilities	
3.4 Performance Criteria11	
3.5 Performance Evaluation Methods11	
4. RESULTS AND OBSERVATIONS	5
4.1 Stability Analysis Results15	
4.2 Generator Performance	
4.3 Power Factor Requirements	
5. CONCLUSIONS	5
Appendix A – Summer Peak Plots	
Appendix B – Winter Peak Plots	
Appendix C – Power Factor Details	

Appendix D – Project Model Data

List of Figures

Figure 3-1.	Power Flow One-line for GEN-2008-023
Figure 3-2.	Power Flow One-line for GEN-2009-01610
Figure 4-1.	GEN-2008-023 Plot for Fault 25 – 3-Phase Fault on the Hobart Jct to Clinton
	AFB 138 kV line, near Hobart Jct
Figure 4-2.	POI Voltages Plot for Fault 25 – 3-Phase Fault on the Hobart Jct to Clinton AFB
	138 kV line, near Hobart Jct
Figure 4-3.	GEN-2009-016 Plot for Fault 21 – 3-Phase Fault on the Falcon Rd to Elk City
	138 kV line, near Falcon Rd 19
Figure 4-4.	POI Voltages Plot for Fault 21 – 3-Phase Fault on the Falcon Rd to Elk City 138
	kV line, near Falcon Rd 19
Figure 4-5.	GEN-2009-016 Plot for Fault 21 – with a 6 Mvar STATCOM added to GEN-
	2009-016
Figure 4-6.	POI Voltages Plot for Fault 21 – with a 6 Mvar STATCOM added to GEN-2009-
	016
Figure 4-7.	Blue Canyon II Plot for Fault $41 - 3$ phase fault on the Southwest to Verden
	138kV line
Figure 4-8.	GEN-2007-052 Plot for Fault 45 – 3-Phase Fault on the Anadarko to Cornville
	Tap 138kV line
Figure 4-9.	Fault 39 – 3-Phase Fault on the Tolk to Tuco 230kV line, near Tolk – GEN-2005-
-	010 Tripping Blocked Error! Bookmark not defined.

List of Tables

Table 1-1.	Interconnection Requests to be Evaluated	5
Table 1-2.	Nearby Interconnection Requests Already in the Queue	5
Table 3-1.	Fault Definitions for DISIS-2009-001 Group 7	11
Table 4-1.	Summary of Results	15
	Power Factor Requirements ¹	
Table 5-1.	Interconnection Requests to be Evaluated	25

0. Certification

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the Laws of the State of **Arkansas**.

> William Quaintance Arkansas Registration Number 13865

1. Background and Scope

The DISIS-2009-001 Group #7 Definitive Impact Study is a generation interconnection study performed by Excel Engineering, Inc. for its non-affiliated client, Southwest Power Pool (SPP). Its purpose is to study the impacts of interconnecting the two projects shown in Table 1-1. The in-service date assumed for the generation additions was 2010.

Table 1-1.	Interconnection	Requests (to be	Evaluated
	meeteomeetion	nequests		L'aluateu

Request	Size	Wind Turbine Model	Point of Interconnection
GEN-2008-023	150	G.E. 1.5MW	Hobart Junction 138kV (511463)
GEN-2009-016	140	Siemens 2.3MW	Falcon Road 138KV (511511)

The previously-queued requests shown in Table 1-2 were included in this study and dispatched at 100% of rated capacity.

Request	Size	Wind Turbine Model	Point of Interconnection
Blue Canyon I	74	CIMTR	Washita 138kV (521089)
Blue Canyon II (GEN-2003-004)	151	Vestas V80	Washita 138kV (521089)
Weatherford	147	G.E. 1.5MW	Weatherford 138kV (511506)
GEN-2003-005	100	G.E. 1.5MW	Anadarko – Paradise 138kV (560916)
GEN-2006-002	150	Gamesa	Beckham County 230kV (560012)
GEN-2006-035	224	Gamesa	Beckham County 230kV (560012)
GEN-2006-043	99	G.E. 1.5MW	Beckham County 230kV (560012)
GEN-2007-032	150	Acciona 1.5MW	Clinton Jct. – Clinton 138kV (560939)
GEN-2007-043	300	G.E. 1.5MW	Cimarron – Anadarko 345kV (210431)
GEN-2007-052	150	Gas Turbine	Anadarko 138kV (520814)

 Table 1-2. Nearby Interconnection Requests Already in the Queue

The study included stability analysis of each proposed interconnection request. Contingencies that resulted in a prior-queued project tripping off-line, if any, were re-run with the prior-queued project's voltage and frequency tripping disabled. Since both of the interconnection requests in this group are wind projects, a power factor analysis was performed.

ATC (Available Transfer Capability) studies were not performed as part of this study. These studies will be required at the time transmission service is actually requested. Additional transmission upgrades may be required based on that analysis.

Study assumptions in general have been based on Excel's knowledge of the electric power system and on the specific information and data provided by SPP. The accuracy of the conclusions contained within this study is sensitive to the assumptions made with respect to generation additions and transmission improvements being contemplated. Changes in the assumptions of the timing of other generation additions or transmission improvements will affect this study's conclusions.

2. Executive Summary

The DISIS-2009-001 Group #7 Definitive Impact Study evaluated the impacts of interconnecting projects GEN-2008-023 and GEN-2009-016 to the SPP transmission system.

One stability problem was found in the summer and winter peak cases after the addition of these generators. The GEN-2009-016 plant is unstable following Fault 21, a three-phase fault on the Falcon Rd to Elk City 138 kV line. The solution is for GEN-2009-016 to add a high-speed, continuously-controlled reactive power compensation device, such as an SVC or STATCOM, with a capacity of at least 6 Mvar. To provide some margin, a minimum 10 Mvar size is recommended. This reactive power device should be operated such that its dynamic capacitive capability is always available to respond to system events.

Power factor requirements were determined, and all study plants must install sufficient reactive power resources to meet the requirements listed in Table 4-2. Except as mentioned above, the reactive power resources need not be high-speed or continuously-controlled. However, any change in wind turbine model or controls could change the stability results, possibly resulting in a need for larger or additional high-speed, continuously-controlled reactive power compensation.

With the assumptions and upgrades described in this report, DISIS-2009-001 Group 7 should be able to connect without causing any stability problems on the SPP transmission grid.

3. Study Development and Assumptions

3.1 Simulation Tools

The Siemens Power Technologies, Inc. PSS/E power system simulation program Version 30.3.3 was used in this study.

3.2 Models Used

SPP provided its latest stability database cases for both summer and winter peak seasons. Each plant's PSS/E model had been developed prior to this study and was included in the power flow case and the dynamics database. As a result, no additional generator modeling was required. Power flow one-line diagrams of the study projects are shown in Figure 3-1 and Figure 3-2. As the figures show, each wind farm model includes explicit representation of the radial transmission line, if any; the substation transformer(s) from transmission voltage to 34.5 kV; and the substation reactive power device(s), if any. The remainder of each wind farm is represented by one or more lumped equivalents including a generator, a step-up transformer, and a collector system impedance. Steady-state and dynamic model data for the study plants are given in Appendix D.

No special modeling is required of line relays in these cases, except for the special modeling related to the wind-turbine tripping.

3.3 Monitored Facilities

All generators and transmission buses in Areas 520, 524, 525, 526, 531, 534, and 536 were monitored.

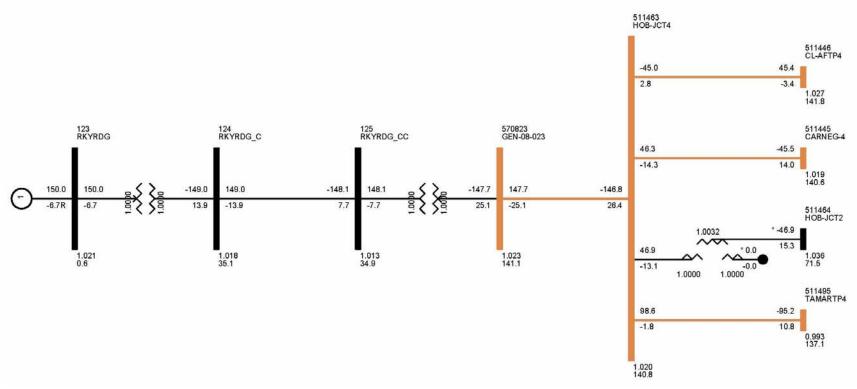


Figure 3-1. Power Flow One-line for GEN-2008-023

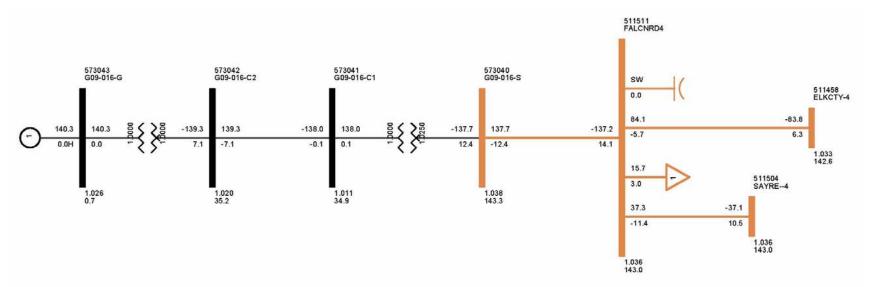


Figure 3-2. Power Flow One-line for GEN-2009-016

3.4 Performance Criteria

The wind generators must comply with FERC Order 661A on low voltage ride through for wind farms. Therefore, the wind generators should not trip off line for faults for under voltage relay actuation. If a wind generator trips off line, an appropriately sized SVC or STATCOM device may need to be specified to keep the wind generator on-line for the fault. SPP was consulted to determine if the addition of an SVC or STATCOM is warranted for the specific condition.

Contingencies that resulted in a prior-queued project tripping off-line, if any, were re-run with the prior-queued project's voltage and frequency tripping disabled to check for stability issues.

3.5 Performance Evaluation Methods

Since all of the interconnection requests are wind projects, a power factor analysis was performed. The power factor analysis consisted of modeling a var generator in each wind farm holding a voltage schedule at the POI. The voltage schedule was set equal to the higher of the voltage with the wind farm off-line or 1.0 per unit.

If the required power factor at the POI is beyond the capability of the studied wind turbines, then capacitor banks would be considered. Factors used in sizing capacitor banks would include two requirements of FERC Order 661A: the ability of the wind farm to ride through low voltage with and without capacitor banks and the ability of the wind farm to recover to pre-fault voltage. If a wind generator trips on high voltage, a leading power factor may be required.

ATC studies were not performed as part of this study. These studies will be required at the time transmission service is actually requested. Additional transmission facilities may be required based on subsequent ATC analysis.

Stability analysis was performed for each proposed interconnection request. Faults were simulated on transmission lines at the POIs and on other nearby transmission equipment. The faults in Table 3-1 were run for each case (three phase and single phase as noted).

Cont. No.	Contingency Name	Description
1	ELTO1 2DU	 3 phase fault on the GEN-2007-043 (210431) to Anadarko (511541) 345kV line, near GEN-2007-043. a. Apply fault at the GEN-2007-043 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
2	FLT02-1PH	Single phase fault and sequence like previous

Table 3-1. Fault Definitions for DISIS-2009-001 Group 7

SPP DISIS-2009-001 Group 7 Definitive Impact Study

Cont. No.	Contingency Name	Description
3	FLT03-3PH	 3 phase fault on the Anadarko (511541) to Wheeler/Midpoint (525835) 345kV line, near Anadarko. a. Apply fault at the Anadarko 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
4	FLT04-1PH	Single phase fault and sequence like previous
5	FLT05-3PH	 3 phase fault on the Lawton Eastside (511468) to Sunnyside (515136) 345kV line, near Lawton Eastside. a. Apply fault at the Lawton Eastside 345kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
6	FLT06-1PH	Single phase fault and sequence like previous
7	FLT07-3PH	 3 phase fault on the GEN-2007-032 (560939) to Clinton Jct. (511485) 138kV line, near GEN-2007-032. a. Apply fault at the GEN-2007-032 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
8	FLT08-1PH	Single phase fault and sequence like previous
9	FLT09-3PH	 3 phase fault on the Clinton Jct. (511485) to Elk City (511458) 138kV line, near Clinton Jct. a. Apply fault at the Clinton Jct. 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
10	FLT10-1PH	Single phase fault and sequence like previous
11	FLT11-3PH	 3 phase fault on the Weatherford Wind (511506) to Weatherford Tap (511536) 138kV line, near Weatherford Wind. a. Apply fault at the Weatherford Wind 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
12	FLT12-1PH	Single phase fault and sequence like previous
13	FLT13-3PH	 3 phase fault on the Elk City (511458) to Red Hill (521116) 138kV line, near Elk City. a. Apply fault at the Elk City 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
14	FLT14-1PH	Single phase fault and sequence like previous
15	FLT15-3PH	 3 phase fault on the Elk City (511458) to Clinton AF (511446) 138kV line, near Elk City. a. Apply fault at the Elk City 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
16	FLT16-1PH	Single phase fault and sequence like previous

SPP DISIS-2009-001 Group 7 Definitive Impact Study

Cont. No.	Contingency Name	Description		
17	FLT17-3PH	 3 phase fault on the Elk City 138kV (511458) to 230kV (511490) transformer, near the 138kV bus. a. Apply fault at the Elk City 138kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer. 		
18	FLT18-1PH	Single phase fault and sequence like previous		
19	FLT19-3PH	 3 phase fault on the Anadarko 138kV (520814) to 345kV (511541) transformer, near the 138kV bus. a. Apply fault at the Anadarko 138kV bus. b. Clear fault after 5 cycles by tripping the faulted transformer. 		
20	FLT20-1PH	Single phase fault and sequence like previous		
21	FLT21-3PH	 3 phase fault on the Falcon Road (511511) to Elk City (511458) 138kV line, near the Falcon Road bus. a. Apply fault at the Falcon Road bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
22	FLT22-1PH	Single phase fault and sequence like previous		
23	FLT23-3PH	 3 phase fault on the Falcon Road (511511) to Sayre (511504) 138kV line, near Falcon Road. a. Apply fault at the Falcon Road bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
24	FLT24-1PH	Single phase fault and sequence like previous		
25	FLT25-3PH	 3 phase fault on the Hobart Jct (511463) to Clinton AFB (511446) 138kV line, near Hobart Jct. a. Apply fault at Hobart Jct. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
26	FLT26-1PH	Single phase fault and sequence like previous		
27	FLT27-3PH	 3 phase fault on the Hobart Jct (511463) to Carnegie South (511445) 138kV line, near Hobart Jct. a. Apply fault at Hobart Jct. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
28	FLT28-1PH	Single phase fault and sequence like previous		
29	FLT29-3PH	 3 phase fault on the Hobart Jct. (511463) to Tamarack Tap (511495) 138kV line, near Hobart Jct. a. Apply fault at Hobart Jct. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault. 		
30	FLT30-1PH	Single phase fault and sequence like previous		
31	FLT31-3PH	3 phase fault on the Hobart Jct. (511463) 138/69kv auto.a. Apply fault at Hobart Jct.b. Clear fault after 5 cycles by tripping the faulted auto.		
32	FLT32-1PH	Single phase fault and sequence like previous		

SPP DISIS-2009-001 Group 7 Definitive Impact Study

Cont. No.	Contingency Name	Description
33	FLT33-3PH	 3 phase fault on the Elk City (511490) to Beckham (560012) 230kV line, near Elk City. a. Apply fault at Elk City 230kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
34	FLT34-1PH	Single phase fault and sequence like previous
35	FLT35-3PH	 3 phase fault on the Altus (511440) to Snyder (511435) 138kV line, near Altus. a. Apply fault at Altus 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
36	FLT36-1PH	Single phase fault and sequence like previous
37	FLT37-3PH	 3 phase fault on the Morewood (521001) to Mooreland (520999) 138kV line, near Morewood. a. Apply fault at Morewood 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
38	FLT38-1PH	Single phase fault and sequence like previous
39	FLT39-3PH	 3 phase fault on the Anadarko (520814) to Southwest (511477) 138kV line, near Anadarko. a. Apply fault at the Anadarko 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
40	FLT40-1PH	Single phase fault and sequence like previous
41	FLT41-3PH	 3 phase fault on the Southwest (511477) to Verden (511421) 138kV line, near Southwest. a. Apply fault at the Southwest 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
42	FLT42-1PH	Single phase fault and sequence like previous
43	FLT43-3PH	 3 phase fault on the Southwest (511477) to Elgin Jct. (511486) 138kV line, near Southwest. a. Apply fault at the Southwest 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
44	FLT44-1PH	Single phase fault and sequence like previous
45	FLT45-3PH	 3 phase fault on the Anadarko (520814) to Cornville Tap (520867) 138kV line, near Anadarko. a. Apply fault at the Anadarko 138kV bus. b. Clear fault after 5 cycles by tripping the faulted line. c. Wait 20 cycles, and then re-close the line in (b) back into the fault. d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.
46	FLT46-1PH	Single phase fault and sequence like previous

4. Results and Observations

4.1 Stability Analysis Results

All faults were run for both summer and winter peak conditions. If a previously-queued generator tripped for any of these faults, the voltage and frequency tripping was disabled, and the fault was re-run to check for system stability. No tripping occurred in this study.

Table 4-1 summarizes the overall results for all faults. Figure 4-1 through Figure 4-4 show representative summer peak season plots for a fault at the POI of each of the study projects. Complete sets of plots for both summer and winter peak seasons for each fault and each project are included in Appendices A and B.

As shown in Figure 4-3 and Figure 4-4, GEN-2009-016 and its POI voltage are unstable following Fault 21, a three-phase fault on the Falcon Rd to Elk City 138 kV line. This instability is found in both the summer and winter peak cases. Following outage of this line, the only remaining connection to the grid for GEN-2009-016 is a long 138 kV line to Sayre, Erick, Sweetwater, Durham, Brantley, and Morewood. The Siemens wind turbines are unable to remain stable under these conditions.

This contingency was tested with steady-state QV analysis and was found to be unstable due to insufficient reactive power support. A mechanically switched capacitor does not fix the problem. Only a continuously controlled voltage support device of at least 6 Mvar (in the winter case) will maintain steady-state stability.

A STATCOM was modeled on the GEN-2009-016 34.5 kV substation bus, and dynamic simulations show that the minimum STATCOM size needed for stability of Fault 21 is 6 Mvar in the winter peak case and 1 Mvar in the summer case. A larger STATCOM size such as 10 Mvar is recommended to provide some margin for variation in plant and system conditions.

Con No	0,0	Description	Summer Peak Results	Winter Peak Results
1	FLT01-3PH	3 phase fault on the GEN-2007-043 (210431) to Anadarko (511541) 345kV line, near GEN-2007-043.	ОК	OK
2	FLT02-1PH	Single phase fault and sequence like previous	OK	OK
3	FLT03-3PH	3 phase fault on the Anadarko (511541) to Wheeler/Midpoint (525835) 345kV line, near Anadarko.		OK
4	FLT04-1PH	Single phase fault and sequence like previous		OK
5	FLT05-3PH	FLT05-3PH3 phase fault on the Lawton Eastside (511468) to Sunnyside (515136) 345kV line, near Lawton Eastside.		OK
6	FLT06-1PH	Single phase fault and sequence like previous	OK	OK

 Table 4-1.
 Summary of Results

Cont. No.	Contingency Name			Winter Peak Results	
7	FLT07-3PH	3 phase fault on the GEN-2007-032 (560939) to Clinton Jct. (511485) 138kV line, near GEN-2007-032.	OK	OK	
8	FLT08-1PH	Single phase fault and sequence like previous	OK	OK	
9	FLT09-3PH	FLT09-3PH 3 phase fault on the Clinton Jct. (511485) to Elk City (511458) 138kV line, near Clinton Jct.			
10	FLT10-1PH	Single phase fault and sequence like previous	OK	OK	
11	FLT11-3PH	3 phase fault on the Weatherford Wind (511506) to Weatherford Tap (511536) 138kV line, near Weatherford Wind.	ОК	ОК	
12	FLT12-1PH	Single phase fault and sequence like previous	OK	OK	
13	FLT13-3PH	3 phase fault on the Elk City (511458) to Red Hill (521116) 138kV line, near Elk City.	OK	OK	
14	FLT14-1PH	Single phase fault and sequence like previous	OK	OK	
15	FLT15-3PH	3 phase fault on the Elk City (511458) to Clinton AF (511446) 138kV line, near Elk City.	OK	OK	
16	FLT16-1PH	Single phase fault and sequence like previous	OK	OK	
17	FLT17-3PH	FLT17-3PH ³ phase fault on the Elk City 138kV (511458) to 230kV (511490) transformer, near the 138kV bus.			
18	FLT18-1PH	Single phase fault and sequence like previous	OK	OK	
19	FLT19-3PH	3 phase fault on the Anadarko 138kV (520814) to 345kV (511541) transformer, near the 138kV bus.	OK	OK	
20	FLT20-1PH	Single phase fault and sequence like previous		OK	
21	FLT21-3PH	3 phase fault on the Falcon Road (511511) to Elk City (511458) 138kV line, near the Falcon Road bus.	G09-16 and nearby voltages Unstable		
21fix1	FLT21- 3PH-fix1	line near the Halcon Road bus 6 Myar NIA II TIM at GUY-16 34 NEV		ОК	
22	FLT22-1PH	Single phase fault and sequence like previous	OK	OK	
23	FLT23-3PH	3 phase fault on the Falcon Road (511511) to Sayre (511504) 138kV line, near Falcon Road.	OK	OK	
24	FLT24-1PH	Single phase fault and sequence like previous	OK	OK	
25	FLT25-3PH	3 phase fault on the Hobart Jct (511463) to Clinton AFB (511446) 138kV line, near Hobart Jct.	ОК	ОК	
26	FLT26-1PH			OK	
27	FLT27-3PH	3PH 3 phase fault on the Hobart Jct (511463) to Carnegie South (511445) 138kV line, near Hobart Jct.		OK	
28	FLT28-1PH	Single phase fault and sequence like previous		OK	
29	FLT29-3PH	T29-3PH 3 phase fault on the Hobart Jct. (511463) to Tamarack Tap (511495) 138kV line, near Hobart Jct.		OK	
30	FLT30-1PH			OK	
31	FLT31-3PH	3 phase fault on the Hobart Jct. (511463) 138/69kv auto.	OK	OK	
32	FLT32-1PH	PH Single phase fault and sequence like previous		OK	
33	FLT33-3PH	ОК	OK		

Cont. No.	Contingency Name	Description		Winter Peak Results
34	FLT34-1PH	Single phase fault and sequence like previous	OK	OK
35	FLT35-3PH	3 phase fault on the Altus (511440) to Snyder (511435) 138kV line, near Altus.	ОК	OK
36	FLT36-1PH	Single phase fault and sequence like previous	OK	OK
37	FLT37-3PH	3 phase fault on the Morewood (521001) to Mooreland (520999) 138kV line, near Morewood.	ОК	OK
38	FLT38-1PH	Single phase fault and sequence like previous	OK	OK
39	FLT39-3PH	3 phase fault on the Anadarko (520814) to Southwest (511477) 138kV line, near Anadarko.	ОК	ОК
40	FLT40-1PH	Single phase fault and sequence like previous	OK	OK
41	FLT41-3PH	I 3 phase fault on the Southwest (511477) to Verden (511421) 138kV line, near Southwest.		OK
42	FLT42-1PH	Single phase fault and sequence like previous	OK	OK
43	FLT43-3PH3 phase fault on the Southwest (511477) to Elgin Jct. (511486) 138kV line, near Southwest.		OK	ОК
44	FLT44-1PH	Single phase fault and sequence like previous	OK	OK
45	FLT45-3PH	BPH 3 phase fault on the Anadarko (520814) to Cornville Tap (520867) 138kV line, near Anadarko.		OK
46	FLT46-1PH	Single phase fault and sequence like previous	OK	OK

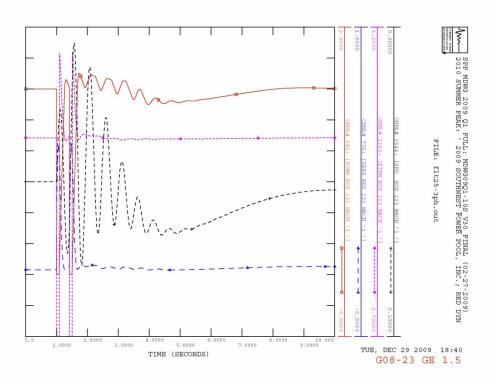


Figure 4-1. GEN-2008-023 Plot for Fault 25 – 3-Phase Fault on the Hobart Jct to Clinton AFB 138 kV line, near Hobart Jct

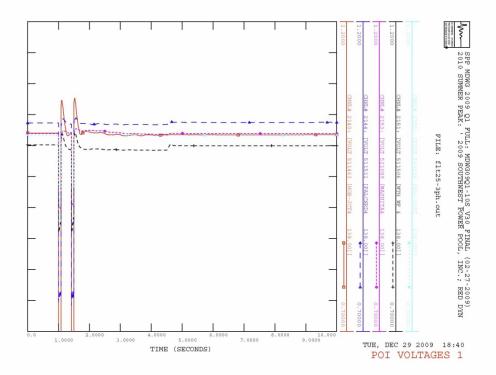


Figure 4-2. POI Voltages Plot for Fault 25 – 3-Phase Fault on the Hobart Jct to Clinton AFB 138 kV line, near Hobart Jct

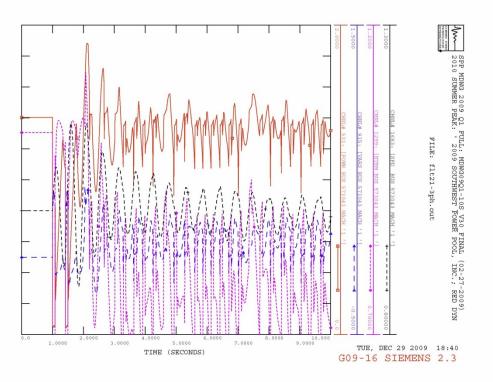


Figure 4-3. GEN-2009-016 Plot for Fault 21 – 3-Phase Fault on the Falcon Rd to Elk City 138 kV line, near Falcon Rd

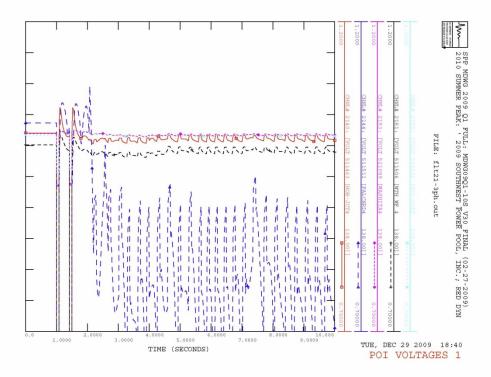


Figure 4-4. POI Voltages Plot for Fault 21 – 3-Phase Fault on the Falcon Rd to Elk City 138 kV line, near Falcon Rd

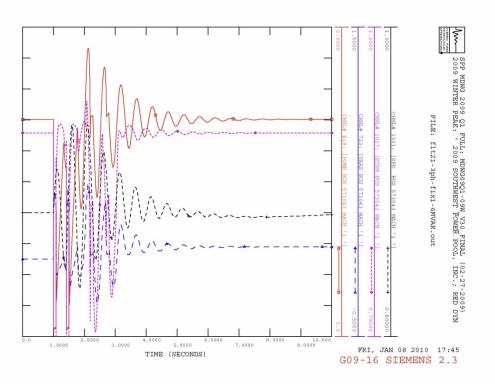


Figure 4-5. GEN-2009-016 Plot for Fault 21 – with a 6 Mvar STATCOM added to GEN-2009-016

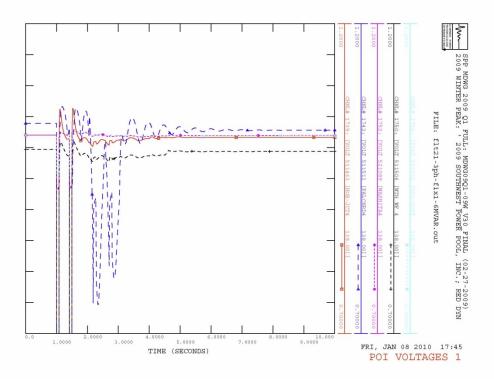


Figure 4-6. POI Voltages Plot for Fault 21 – with a 6 Mvar STATCOM added to GEN-2009-016

4.2 Generator Performance

The Vestas V80 wind turbines at Blue Canyon II show extended oscillations in their generator speeds, as shown in Figure 4-7. However, any impact on the electric system is gone in less than 10 seconds.

Prior-queued project GEN-2007-052 has synchronous generators for its three gas turbines. While stable, the gas turbine excitation system responds rather slowly after fault clearing (Figure 4-8). The terminal voltage overshoots to more than 105% and takes approximately 3-4 seconds to come back to steady state. The project developer should provide updated and accurate dynamic model parameters when these units are commissioned.

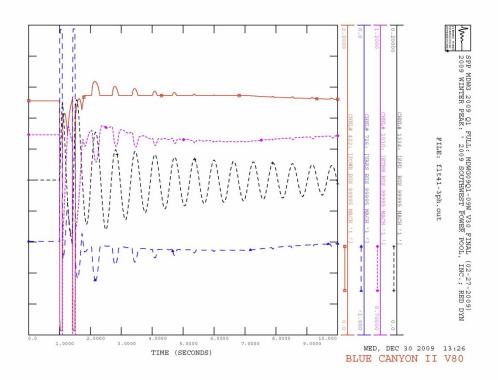


Figure 4-7. Blue Canyon II Plot for Fault 41 – 3 phase fault on the Southwest to Verden 138kV line

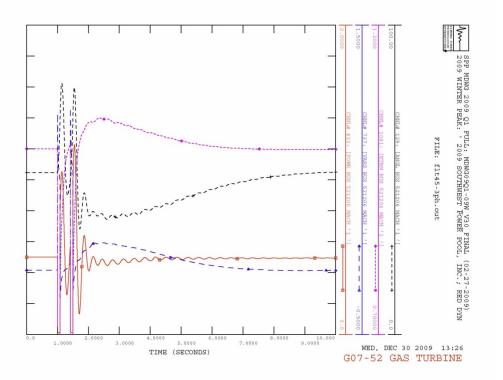


Figure 4-8. GEN-2007-052 Plot for Fault 45 – 3-Phase Fault on the Anadarko to Cornville Tap 138kV line

4.3 Power Factor Requirements

All stability faults were tested as power flow contingencies to determine the power factor requirements for the wind farm study projects to maintain scheduled voltage at their respective points of interconnection (POI). The voltage schedules are set equal to the voltages at the POIs before the projects are added, with a minimum of 1.0 per unit. Fictitious reactive power sources were added to the study projects to maintain scheduled voltage during all studied contingencies. The MW and Mvar injections from the study projects at the POIs were recorded and the resulting power factors were calculated for all contingencies for summer peak and winter peak cases. The most leading and most lagging power factors determine the minimum power factor range capability that the study projects must install before commercial operation.

If more than one study project shared a single POI (none in this case), the projects were grouped together and a common power factor requirement was determined for those study projects. This ensures that none of the study projects is required to provide more or less than its fair share of the reactive power requirements at a single POI. *Prior-queued* projects at the same POI, if any, were not grouped with the study projects because their interconnection requirements were determined in previous studies.

Per FERC and SPP Tariff requirements, if the power factor needed to maintain scheduled voltage were less than 0.95 lagging, then the requirement would be set to 0.95 lagging. This limit was not reached for any study project. The limit for leading power factor requirement is also 0.95, and GEN-2008-023 went beyond this level. Only 0.95 leading will be required.

The final power factor requirements are shown in Table 4-2 below. These are only the minimum power factor ranges based on steady-state analysis. A project developer may install more capability than this if desired.

The full details for each contingency in summer and winter peak cases are given in Appendix C.

 Table 4-2. Power Factor Requirements¹

Drojaat	MW Turbine POI				PF Requirement	
Project	IVI VV	Turbine	POI	Lagging ²	Leading ³	
GEN-2008-023	150	G.E. 1.5MW	Hobart Junction 138kV	1.0	0.95	
GEN-2009-016	140	Siemens 2.3MW	Falcon Road 138KV	1.0	0.965	

Notes:

- 1. For each plant, the table shows the minimum required power factor capability at the point of interconnection that must be designed and installed with the plant. The power factor capability at the POI includes the net effect of the generators, transformers, line impedances, and any reactive compensation devices installed on the plant side of the meter. Installing more capability than the minimum requirement is acceptable.
- 2. Lagging is when the generating plant is supplying reactive power to the transmission grid. In this situation, the alternating current sinusoid "lags" behind the alternating voltage sinusoid, meaning that the current peaks shortly after the voltage.
- 3. Leading is when the generating plant is taking reactive power from the transmission grid. In this situation, the alternating current sinusoid "leads" the alternating voltage sinusoid, meaning that the current peaks shortly before the voltage.

5. Conclusions

The DISIS-2009-001 Group 7 Definitive Impact Study evaluated the impacts of interconnecting each of the projects shown below.

Request	Size	Wind Turbine Model	Point of Interconnection
GEN-2008-023	150	G.E. 1.5MW	Hobart Junction 138kV (511463)
GEN-2009-016	140	Siemens 2.3MW	Falcon Road 138KV (511511)

 Table 5-1. Interconnection Requests Evaluated in this Study

One stability problem was found in the summer and winter peak cases after the addition of these generators. GEN-2009-016 is unstable following Fault 21, a three-phase fault on the Falcon Rd to Elk City 138 kV line. The solution is for GEN-2009-016 to add a high-speed, continuously-controlled reactive power compensation device, such as an SVC or STATCOM, with a capacity of at least 6 Mvar. To provide some margin, a minimum 10 Mvar size is recommended. This reactive power device should be operated such that its dynamic capacitive capability is always available to respond to system events.

Power factor requirements were determined, and all study plants must install sufficient reactive power resources to meet the requirements listed in Table 4-2. Except as mentioned above, the reactive power resources need not be high-speed and continuously-controlled. However, any change in wind turbine model or controls could change the stability results, possibly resulting in a need for larger or additional high-speed, continuously-controlled reactive power compensation.

With the assumptions and upgrades described in this report, DISIS-2009-001 Group 7 should be able to connect without causing any stability problems on the SPP transmission grid.

Appendix A – Summer Peak Plots

Appendix B – Winter Peak Plots

Appendix C – Power Factor Details

Appendix D – Project Model Data