

# GEN-2008-018 Impact Restudy for Generator Modification (Turbine Change)

SPP Generation Interconnection Studies

GEN-2008-018

June 2013

#### **Executive Summary**

This document reports on the findings of a restudy for the GEN-2008-018 interconnection request. The interconnection customer has requested this restudy to determine the effects of changing wind turbine generators from the previously studied GE 1.5MW wind turbine generators to the GE1.85MW wind turbine generators.

In this restudy the project uses two hundred nineteen (219) GE 1.85MW wind turbine generators for an aggregate power of 405.15MW and is located in Finney County, Kansas. The interconnection request shows that the GE 1.85MW wind turbine generators will have the optional +/-0.90 power factor capabilities installed.

The restudy showed that no stability problems were found during the summer or the winter peak conditions as a result of changing to the GE 1.85MW wind turbine generators. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and, therefore, will meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

A power factor analysis was performed in this study. The facility will be required to maintain a 95% lagging (providing VARs) and 95% leading (absorbing VARs) power factor at the point of interconnection. Additionally, GEN-2008-018 is required to install capacitor banks (40MVAR) on its 34.5kV bus and reactor banks (55MVAR) on its 345kV bus in addition to its generator reactive capability (+/-0.90 power factor).

A Limited Operation Study was performed at the Customer's request to determine the operating limit before the Finney-Holcomb 345kV circuit #2 can be completed. Analysis has determined that to avoid potential voltage collapse, the GEN-2008-018 Generator can interconnect a maximum of 350MW before the Finney-Holcomb 345kV line can be completed.

It should be noted that although this study analyzed many of the most probable contingencies, it is not an all-inclusive list that can account for every operational situation. Additionally, the generator[s] may not be able to inject any power onto the Transmission System due to constraints that fall below the threshold of mitigation for a Generator Interconnection request. Because of this, it is likely that the **Customer[s] may be required to reduce their generation output to 0 MW under certain system conditions** to allow system operators to maintain the reliability of the transmission network.

With the assumptions outlined in this report and with all the required network upgrades from the GEN-2008-018 GIA in place, GEN-2008-018 should be able to reliably interconnect to the SPP transmission grid.

Nothing in this study should be construed as a guarantee of transmission service. If the customer wishes to sell power from the facility, a separate request for transmission service shall be requested on Southwest Power Pool's OASIS by the Customer.

### 1.0 Introduction

The interconnection customer has requested this restudy to determine the effects of changing wind turbine generators from the previously studied GE 1.5MW wind turbine generators to the GE1.85MW wind turbine generators.

In this study SPP monitored the generators and transmission lines in Areas 520, 524, 525, 526, 531, 534, 536, 640, 645, 650, and 652.

#### 2.0 Purpose

The purpose of this impact restudy is to evaluate the effects of using GE 1.85MW wind turbine generators on the reliability of the Transmission System.

#### 3.0 Facilities

#### 3.1 Customer Facility

With two hundred-nineteen (219) GE 1.85MW wind turbine generators, the project has a maximum power output of 405.15MW. Figure 1 shows the facility one-line drawing.

#### 3.2 Interconnection Facility

The point of interconnection (POI) is the SPS Finney 345kV substation located in Finney County, Kansas (see Figure 1).



Figure 1: GEN-2008-018 Facility One-line Diagram

### 4.0 Stability Study Criteria

FERC Order 661A Low Voltage Ride-Through Provisions (LVRT), which went into effect January 1, 2006, requires that wind generating plants remain in-service during 3-phase faults at the point of interconnection. This order may require a Static VAR Compensator (SVC) or STATCOM device be specified at the Customer facility to keep the wind generator on-line for the fault. Dynamic Stability studies performed as part of the System Impact Study will provide additional guidance as to whether the reactive compensation can be static or a portion must be dynamic (such as a SVC or STATCOM).

### 5.0 Model Development

Transient stability analysis was performed using modified versions of the 2012 series of Model Development Working Group (MDWG) dynamic study models representing two geographical study areas or groups within the SPP footprint:

- 1. Hitchland area (Group 2)
- 2. Spearville area (Group 3)

Each group contains the 2014 (summer and winter) seasonal models or cases. The cases are then adapted to resemble the power flow study cases with regards to prior queued generation requests and topology. Finally the prior queued and study generation is dispatched into the SPP footprint. Initial simulations are then carried out for a nodisturbance run of twenty (20) seconds to verify the numerical stability of the model.

Siemens PSS/E Version 32.1 was the software tool used to perform the impact restudy. For simulation purposes, the Customer's facility was simplified by using the equivalent model of the wind farm as shown in Figure 1. The data used to develop the equivalent wind farm model were supplied by the Customer.

The Customer also supplied the PSS/E Version 32.1 stability models for the GE 1.85MW wind turbine generators. The GE's reactive power capability is +/-0.90.

Prior queued requests were included in the saved cases. The prior queued requests are shown in Table 1.

| Request       | Size<br>(MW) | Generator Model | Point of Interconnection     |
|---------------|--------------|-----------------|------------------------------|
| GEN-2001-039A | 104          | GE 1.6MW        | Shooting Star 115kV (539763) |
| GEN-2002-008  | 240          | GE 1.5MW        | Hitchland 345kV (523097)     |
| GEN-2002-009  | 79.8         | Suzlon 2.1MW    | Hansford 115kV (523195)      |
| GEN-2002-025A | 150          | GE 1.5 MW       | Spearville 230kV (539695)    |
| GEN-2003-020  | 159          | GE 1.5 MW       | Carson Co. 115kV (523924)    |
| GEN-2004-014  | 154.5        | GE 1.5 MW       | Spearville 230kV (539695)    |

| Table  | 1: | Prior | Queued | Projects |
|--------|----|-------|--------|----------|
| i abie | Ι. | FIIO  | Queueu | FIUJECIS |

| Request      | Size<br>(MW) | Generator Model      | Point of Interconnection                              |
|--------------|--------------|----------------------|-------------------------------------------------------|
| GEN-2005-012 | 250.7        | Siemens 2.3MW        | Spearville 345kV (531469)                             |
| GEN-2006-006 | 205.5        | GE 1.5 MW            | Spearville 345kV (531469)                             |
| GEN-2006-020 | 20           | D8.2 2.0MW           | Tap on Hitchland – Sherman Tap 115kV<br>line (560200) |
| GEN-2006-021 | 100          | Clipper 2.5MW        | Flat Ridge 138kV (539638)                             |
| GEN-2006-022 | 150          | Clipper 2.5MW        | Pratt 115kV (539687)                                  |
| GEN-2006-044 | 370          | DeWind D9.2<br>2.0MW | Hitchland 345kV (523097)                              |
| GEN-2007-038 | 200          | Clipper 2.5MW        | Spearville 345kV (531469)                             |
| GEN-2007-040 | 200.1        | Siemens 2.3MW        | Buckner 345kV (531501)                                |
| GEN-2007-046 | 199.5        | GE 1.5MW             | Hitchland 115kV (523093)                              |
| GEN-2007-057 | 34.5         | GE 1.5MW             | Moore Co. East 115kV (523308)                         |
| GEN-2008-047 | 300          | GE 1.5MW             | Tap on Hitchland to Woodward 345kV<br>line (580500)   |
| GEN-2008-079 | 98.9         | Siemens 2.3MW        | Tap on Cudahy – Fort Dodge 115kV line<br>(560229)     |
| GEN-2008-124 | 200.1        | Siemens 2.3MW        | Spearville 345kV (531469)                             |
| GEN-2010-001 | 300          | Suzlon 2.1MW         | Tap on Hitchland to Woodward 345kV line (580500)      |
| GEN-2010-009 | 165.6        | Siemens 2.3MW        | Buckner 345kV (531501)                                |
| GEN-2010-014 | 358.8        | Siemens SWT<br>2.3MW | Hitchland 345kV (523097)                              |
| GEN-2010-015 | 200.1        | Siemens 2.3MW        | Spearville 345kV (531469)                             |
| GEN-2010-045 | 197.8        | Siemens 2.3MW        | Buckner 345kV (531501)                                |

### **Table 1: Prior Queued Projects**

### 6.0 Stability Study Analysis

Fifty (50) contingencies were considered for the transient stability simulations in this scenario. These contingencies included three phase faults and single phase line faults at locations defined by SPP. Single-phase line faults were simulated by applying a fault impedance to the positive sequence network at the fault location to represent the effect of the negative and zero sequence networks on the positive sequence network. The fault impedance was computed to give a positive sequence voltage at the specified fault location of approximately 60% of pre-fault voltage. This method is in agreement with SPP current practice. The faults that were defined and simulated are listed in Table 2. The faults were simulated on both the summer peak and the winter peak models.

| Cont. | Cont.     | Description                                                                     |
|-------|-----------|---------------------------------------------------------------------------------|
| NO.   | Name      | 3 phase fault on Finney 345kV Bus 523853 to Hitchland 345kV Bus 523097 CKT 1.   |
|       |           | near Finney.                                                                    |
| 1     |           | a. Apply fault at the Finney 345kV bus.                                         |
| I     | FLIUI_3PH | b. Clear fault after 5 cycles by tripping the faulted line.                     |
|       |           | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.       |
|       |           | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.     |
| 2     | FLT02_1PH | Single phase fault and sequence like previous                                   |
|       |           | 3 phase fault on Finney 345kV Bus 523853 to Lamar 345kV Bus 599950 CKT 1, near  |
|       |           | Finney.                                                                         |
| 3     | FLT03_1PH | a. Apply fault at the Finney 345KV bus.                                         |
|       |           | b. Clear fault after 5 cycles by inpping the faulted line.                      |
|       |           | d Leave fault on for 5 cycles, then trip the line in (b) back into the fault.   |
| 1     |           | Single phase fault and sequence like previous                                   |
|       |           | 3 phase fault on Finney 345k\/ Bus 523853 to Holcomb 345k\/ Bus 531449 CKT 1    |
|       |           | near Finney.                                                                    |
| _     |           | a. Apply fault at the Finney 345kV bus.                                         |
| 5     | FL105_3PH | b. Clear fault after 5 cycles by tripping the faulted line.                     |
|       |           | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.       |
|       |           | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.     |
| 6     | FLT06_1PH | Single phase fault and sequence like previous                                   |
|       |           | 3 phase fault on Holcomb 345kV Bus 531449 to Setab 345kV Bus 531465 CKT 1, near |
|       |           | Holcomb.                                                                        |
| 7     | FLT07_3PH | a. Apply fault at the Holcomb 345kV bus.                                        |
|       |           | b. Clear fault after 5 cycles by tripping the faulted line.                     |
|       |           | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.       |
| 0     |           | Greate radii on for 5 cycles, then the the line in (b) and remove radii.        |
| 0     | FLIVO_IFH | 3 phase fault on Holcomb 3/5k// Bus 531//0 to Buckhor 3/5k// Bus 531501 CKT 1   |
|       |           | near Holcomb                                                                    |
|       |           | a Apply fault at the Holcomb 345kV bus                                          |
| 9     | FLT09_3PH | b. Clear fault after 5 cycles by tripping the faulted line.                     |
|       |           | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.       |
|       |           | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.     |
| 10    | FLT10_1PH | Single phase fault and sequence like previous                                   |
|       |           | 3 phase fault on Hitchland 345kV Bus 523097 to Potter County 345kV Bus 523961   |
|       |           | CKT 1, near Hitchland.                                                          |
| 11    | FLT11_3PH | a. Apply fault at the Hitchland 345kV bus.                                      |
|       |           | b. Clear fault after 5 cycles by tripping the faulted line.                     |
|       |           | c. Wait 20 cycles, and then re-close the line in (b) back into the fault.       |
| 40    |           | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.     |
| 12    | FLI12_1PH | Single phase fault and sequence like previous                                   |
|       |           | 3 phase fault on Hitchland 345kV Bus 523097 to Beaver County 345kV Bus 580500   |
|       |           | UNT 1, Hear FillChiand.                                                         |
| 13    | FLT13_3PH | a. Apply fault after 5 cycles by tripping the faulted line                      |
|       |           | c Wait 20 cycles and then re-close the line in (b) back into the fault          |
|       |           | d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault      |
| 14    | FLT14 1PH | Single phase fault and sequence like previous                                   |

| Cont. | Cont.     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO.   | Name      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15    | FLT15_3PH | <ul> <li>3 phase fault on Setab 345kV Bus 531465 to Mingo 345kV Bus 531451 CKT 1, near Setab.</li> <li>a. Apply fault at the Setab 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>                                                                      |
| 16    | FLT16 1PH | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17    | FLT17_3PH | <ul> <li>3 phase fault on Buckner 345kV Bus 531501 to Spearville 345kV Bus 531469 CKT 1, near Buckner.</li> <li>a. Apply fault at the Buckner 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>                                                           |
| 18    | FLT18_1PH | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 19    | FLT19_3PH | <ul> <li>3 phase fault on Spearville 345kV Bus 531469 to Clark County 345kV Bus 539800 CKT 1, near Spearville.</li> <li>a. Apply fault at the Spearville 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>                                                |
| 20    | FLT20 1PH | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 21    | FLT21_3PH | <ul> <li>3 phase fault on Spearville 345kV Bus 531469 to Ironwood 345kV Bus 539803 CKT 1, near Spearville.</li> <li>a. Apply fault at the Spearville 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>                                                    |
| 22    |           | Cingle phase fault and acquisites like providue                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23    | FLT23_3PH | <ul> <li>3 phase fault and sequence like previous</li> <li>3 phase fault on Spearville 345kV Bus 531469 to GEN11-017 345kV Bus 560242 CKT 1, near Spearville.</li> <li>a. Apply fault at the Spearville 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul> |
| 24    | FLT24 1PH | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25    | FLT25_3PH | <ul> <li>3 phase fault on Clark County 345kV Bus 539800 to Thistle 345kV Bus 539801 CKT 1, near Clark County.</li> <li>a. Apply fault at the Clark County 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>                                               |
| 26    | FLT26_1PH | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 27    | FLT27_3PH | <ul> <li>3 phase fault on Thistle 345kV Bus 539801 to Woodward 345kV Bus 515375 CKT 1, near Thistle.</li> <li>a. Apply fault at the Thistle 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>                                                             |
| 28    | FLT28_1PH | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Cont.<br>No. | Cont.<br>Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29           | FLT29_3PH     | <ul> <li>3 phase fault on Woodward 345kV Bus 515375 to Beaver County 345kV Bus 580500 CKT 1, near Woodward.</li> <li>a. Apply fault at the Woodward 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault</li> </ul>                                               |
| 30           | FLT30 1PH     | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 31           | FLT31_3PH     | <ul> <li>3 phase fault on Holcomb 115kV Bus 531448 to Jones 115kV Bus 531379 CKT 1, near Holcomb.</li> <li>a. Apply fault at the Holcomb 115kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>                                                         |
| 32           | FLT32_1PH     | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 33           | FLT33_3PH     | <ul> <li>3 phase fault on Holcomb 115kV Bus 531448 to Plymell 115kV Bus 531393 CKT 1, near Holcomb.</li> <li>a. Apply fault at the Holcomb 115kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>                                                       |
| 34           | FLT34 1PH     | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 35           | FLT35_3PH     | <ul> <li>3 phase fault on Holcomb 115kV Bus 531448 to Fletcher 115kV Bus 531420 CKT 1, near Holcomb.</li> <li>a. Apply fault at the Holcomb 115kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> </ul>                                                                                                                                           |
| 36           |               | Single phase fault and sequence like provious                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 37           | FLT37_3PH     | <ul> <li>3 phase fault and sequence like previous</li> <li>3 phase fault on Holcomb 115kV Bus 531448 to Garden City 115kV Bus 531445 CKT 1, near Holcomb.</li> <li>a. Apply fault at the Holcomb 115kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul> |
| 38           | FLT38_1PH     | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 39           | FLT39_3PH     | <ul> <li>3 phase fault on the Spearville 230kV Bus 539695 to Great Bend 230kV Bus 539679<br/>CKT 1, near Spearville.</li> <li>a. Apply fault at the Spearville 230kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>                                   |
| 40           | FLT40_1PH     | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 41           | FLT41_3PH     | <ul> <li>3 phase fault on the Scott City 115kV Bus 531433 to Pile 115kV Bus 531432 CKT 1, near Scott City.</li> <li>a. Apply fault at the Scott City 115kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>                                             |
| 42           | FLT42_3PH     | Single phase fault and sequence like previous                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Cont.<br>No. | Cont.<br>Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 43           | FLT43_3PH     | 3 phase fault on the Holcomb 345kV Bus 531449 to Holcomb 230kv Bus 531448 to<br>Holcomb 13.8kVkV Bus 531450 CKT 1, near Holcomb 345kV.<br>a. Apply fault at the Holcomb 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted transformer.                                                                                                                                                                   |
| 44           | FLT44_3PH     | 3 phase fault on the Hitchland 345kV Bus 523097 to Hitchland 230kV Bus 523095 to<br>Hitchland 13.8kVkV Bus 523094 CKT 2, near Hitchland 345kV.<br>a. Apply fault at the Hitchland 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted transformer.                                                                                                                                                         |
| 45           | FLT45_3PH     | 3 phase fault on the Setab 345kV Bus 531465 to Setab 115kv Bus 531464 to Setab<br>13.8kVkV Bus 531259 CKT 1, near Setab 345kV.<br>a. Apply fault at the Setab 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted transformer.                                                                                                                                                                             |
| 46           | FLT46_3PH     | 3 phase fault on the Spearville 230kV Bus 539695 to Spearville 115kv Bus 539694 to<br>Spearville 13.8kV Bus 539935 CKT 1, near Spearville 230kV.<br>a. Apply fault at the Spearville 230kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted transformer.                                                                                                                                                      |
| 47           | FLT47_3PH     | 3 phase fault on the Spearville 345kV Bus 531469 to Spearville 230kV Bus 539695 to<br>Spearville 13.8kV Bus 531468 CKT 1, near Spearville 345kV.<br>a. Apply fault at the Spearville 345kV bus.<br>b. Clear fault after 5 cycles by tripping the faulted transformer.                                                                                                                                                      |
| 48           | FLT48_3PH     | <ul> <li>3 phase fault on Hitchland 345kV Bus 523097 to Beaver County 345kV Bus 580500 CKT 2, near Hitchland.</li> <li>a. Apply fault at the Hitchland 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>  |
| 49           | FLT49_3PH     | <ul> <li>3 phase fault on Thistle 345kV Bus 539801 to Woodward 345kV Bus 515375 CKT 2, near Thistle.</li> <li>a. Apply fault at the Thistle 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul>             |
| 50           | FLT50_3PH     | <ul> <li>3 phase fault on Woodward 345kV Bus 515375 to Beaver County 345kV Bus 580500<br/>CKT 2, near Woodward.</li> <li>a. Apply fault at the Woodward 345kV bus.</li> <li>b. Clear fault after 5 cycles by tripping the faulted line.</li> <li>c. Wait 20 cycles, and then re-close the line in (b) back into the fault.</li> <li>d. Leave fault on for 5 cycles, then trip the line in (b) and remove fault.</li> </ul> |

### 7.0 Simulation Results

All faults were run for both summer and winter cases, and no tripping occurred in this study. Table 3 summarizes the results for all faults. Complete sets of plots for summer and winter cases are available on request.

Based on the dynamic results and with all network upgrades in service, GEN-2008-018 did not cause any stability problems and remained stable for all faults studied. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and therefore, meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

### Table 3: Contingency Simulation Results

|     |               |                                                                                                                                   |        | Group 2 – Hitchland |        | Group 3 – Spearville |  |  |
|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|--------|----------------------|--|--|
|     |               |                                                                                                                                   |        | Area                |        | Area                 |  |  |
| No. | Cont.<br>Name | Description                                                                                                                       | Summer | Winter              | Summer | Winter               |  |  |
| 1   | FLT01_3PH     | 3 phase fault on Finney 345kV Bus 523853 to Hitchland 345kV Bus 523097 CKT 1, near Finney.                                        | Stable | Stable              | Stable | Stable               |  |  |
| 2   | FLT02_1PH     | Single phase fault and sequence like previous                                                                                     | Stable | Stable              | Stable | Stable               |  |  |
| 3   | FLT03_1PH     | 3 phase fault on Finney 345kV Bus 523853 to Lamar 345kV Bus 599950<br>CKT 1, near Finney.                                         | Stable | Stable              | Stable | Stable               |  |  |
| 4   | FLT04_1PH     | Single phase fault and sequence like previous                                                                                     | Stable | Stable              | Stable | Stable               |  |  |
| 5   | FLT05_3PH     | 3 phase fault on Finney 345kV Bus 523853 to Holcomb 345kV Bus 531449 CKT 1, near Finney.                                          | Stable | Stable              | Stable | Stable               |  |  |
| 6   | FLT06_1PH     | Single phase fault and sequence like previous                                                                                     | Stable | Stable              | Stable | Stable               |  |  |
| 7   | FLT07_3PH     | 3 phase fault on Holcomb 345kV Bus 531449 to Setab 345kV Bus 531465 CKT 1, near Holcomb.                                          | Stable | Stable              | Stable | Stable               |  |  |
| 8   | FLT08_1PH     | Single phase fault and sequence like previous                                                                                     | Stable | Stable              | Stable | Stable               |  |  |
| 9   | FLT09_3PH     | 3 phase fault on Holcomb 345kV Bus 531449 to Buckner 345kV Bus 531501 CKT 1, near Holcomb.                                        | Stable | Stable              | Stable | Stable               |  |  |
| 10  | FLT10_1PH     | Single phase fault and sequence like previous                                                                                     | Stable | Stable              | Stable | Stable               |  |  |
| 11  | FLT11_3PH     | 3 phase fault on Hitchland 345kV Bus 523097 to Potter County 345kV<br>Bus 523961 CKT 1, near Hitchland.                           | Stable | Stable              | Stable | Stable               |  |  |
| 12  | FLT12_1PH     | Single phase fault and sequence like previous                                                                                     | Stable | Stable              | Stable | Stable               |  |  |
| 13  | FLT13_3PH     | 3 phase fault on Hitchland 345kV Bus 523097 to Beaver County 345kV<br>Bus 580500 CKT 1, near Hitchland.                           | Stable | Stable              | Stable | Stable               |  |  |
| 14  | FLT14_1PH     | Single phase fault and sequence like previous                                                                                     | Stable | Stable              | Stable | Stable               |  |  |
| 15  | FLT15_3PH     | 3 phase fault on Setab 345kV Bus 531465 to Mingo 345kV Bus 531451<br>CKT 1, near Setab.<br>a. Apply fault at the Setab 345kV bus. | Stable | Stable              | Stable | Stable               |  |  |
| 16  | FLT16_1PH     | Single phase fault and sequence like previous                                                                                     | Stable | Stable              | Stable | Stable               |  |  |
| 17  | FLT17_3PH     | 3 phase fault on Buckner 345kV Bus 531501 to Spearville 345kV Bus 531469 CKT 1, near Buckner.                                     | Stable | Stable              | Stable | Stable               |  |  |
| 18  | FLT18_1PH     | Single phase fault and sequence like previous                                                                                     | Stable | Stable              | Stable | Stable               |  |  |
| 19  | FLT19_3PH     | 3 phase fault on Spearville 345kV Bus 531469 to Clark County 345kV<br>Bus 539800 CKT 1, near Spearville.                          | Stable | Stable              | Stable | Stable               |  |  |
| 20  | FLT20_1PH     | Single phase fault and sequence like previous                                                                                     | Stable | Stable              | Stable | Stable               |  |  |
| 21  | FLT21_3PH     | 3 phase fault on Spearville 345kV Bus 531469 to Ironwood 345kV Bus 539803 CKT 1, near Spearville.                                 | Stable | Stable              | Stable | Stable               |  |  |

### Table 3: Contingency Simulation Results

|     |               |                                                                                                                                     | Group 2 – | Hitchland | Group 3 – Spearville |        |  |
|-----|---------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------------------|--------|--|
|     | •             | 1                                                                                                                                   | A         | rea       |                      | Area   |  |
| No. | Cont.<br>Name | Description                                                                                                                         | Summer    | Winter    | Summer               | Winter |  |
| 22  | FLT22_1PH     | Single phase fault and sequence like previous                                                                                       | Stable    | Stable    | Stable               | Stable |  |
| 23  | FLT23_3PH     | 3 phase fault on Spearville 345kV Bus 531469 to GEN11-017 345kV Bus 560242 CKT 1, near Spearville.                                  | Stable    | Stable    | Stable               | Stable |  |
| 24  | FLT24_1PH     | Single phase fault and sequence like previous                                                                                       | Stable    | Stable    | Stable               | Stable |  |
| 25  | FLT25_3PH     | 3 phase fault on Clark County 345kV Bus 539800 to Thistle 345kV Bus 539801 CKT 1, near Clark County.                                | Stable    | Stable    | Stable               | Stable |  |
| 26  | FLT26_1PH     | Single phase fault and sequence like previous                                                                                       | Stable    | Stable    | Stable               | Stable |  |
| 27  | FLT27_3PH     | 3 phase fault on Thistle 345kV Bus 539801 to Woodward 345kV Bus 515375 CKT 1, near Thistle.                                         | Stable    | Stable    | Stable               | Stable |  |
| 28  | FLT28_1PH     | Single phase fault and sequence like previous                                                                                       | Stable    | Stable    | Stable               | Stable |  |
| 29  | FLT29_3PH     | 3 phase fault on Woodward 345kV Bus 515375 to Beaver County 345kV<br>Bus 580500 CKT 1, near Woodward.                               | Stable    | Stable    | Stable               | Stable |  |
| 30  | FLT30_1PH     | Single phase fault and sequence like previous                                                                                       | Stable    | Stable    | Stable               | Stable |  |
| 31  | FLT31_3PH     | 3 phase fault on Holcomb 115kV Bus 531448 to Jones 115kV Bus 531379 CKT 1, near Holcomb                                             | Stable    | Stable    | Stable               | Stable |  |
| 32  | FLT32_1PH     | Single phase fault and sequence like previous                                                                                       | Stable    | Stable    | Stable               | Stable |  |
| 33  | FLT33_3PH     | 3 phase fault on Holcomb 115kV Bus 531448 to Plymell 115kV Bus 531393 CKT 1, near Holcomb.                                          | Stable    | Stable    | Stable               | Stable |  |
| 34  | FLT34_1PH     | Single phase fault and sequence like previous                                                                                       | Stable    | Stable    | Stable               | Stable |  |
| 35  | FLT35_3PH     | 3 phase fault on Holcomb 115kV Bus 531448 to Fletcher 115kV Bus 531420 CKT 1, near Holcomb.                                         | Stable    | Stable    | Stable               | Stable |  |
| 36  | FLT36_1PH     | Single phase fault and sequence like previous                                                                                       | Stable    | Stable    | Stable               | Stable |  |
| 37  | FLT37_3PH     | 3 phase fault on Holcomb 115kV Bus 531448 to Garden City 115kV Bus 531445 CKT 1, near Holcomb.                                      | Stable    | Stable    | Stable               | Stable |  |
| 38  | FLT38_1PH     | Single phase fault and sequence like previous                                                                                       | Stable    | Stable    | Stable               | Stable |  |
| 39  | FLT39_3PH     | 3 phase fault on the Spearville 230kV Bus 539695 to Great Bend 230kV<br>Bus 539679 CKT 1, near Spearville.                          | Stable    | Stable    | Stable               | Stable |  |
| 40  | FLT40_1PH     | Single phase fault and sequence like previous                                                                                       | Stable    | Stable    | Stable               | Stable |  |
| 41  | FLT41_3PH     | 3 phase fault on the Scott City 115kV Bus 531433 to Pile 115kV Bus 531432 CKT 1, near Scott City.                                   | Stable    | Stable    | Stable               | Stable |  |
| 42  | FLT42_3PH     | Single phase fault and sequence like previous                                                                                       | Stable    | Stable    | Stable               | Stable |  |
| 43  | FLT43_3PH     | 3 phase fault on the Holcomb 345kV Bus 531449 to Holcomb 230kv Bus 531448 to Holcomb 13.8kVkV Bus 531450 CKT 1, near Holcomb 345kV. | Stable    | Stable    | Stable               | Stable |  |

### Table 3: Contingency Simulation Results

|     |               |                                                                                                                                                                                  | Group 2 – | Hitchland | Group 3 – Spearville |        |  |
|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------------------|--------|--|
|     |               |                                                                                                                                                                                  | A         | rea       |                      | Area   |  |
| No. | Cont.<br>Name | Description                                                                                                                                                                      | Summer    | Winter    | Summer               | Winter |  |
| 44  | FLT44_3PH     | 3 phase fault on the Hitchland 345kV Bus 523097 to Hitchland 230kV Bus 523095 to Hitchland 13.8kVkV Bus 523094 CKT 2, near Hitchland 345kV.                                      | Stable    | Stable    | Stable               | Stable |  |
| 45  | FLT45_3PH     | 3 phase fault on the Setab 345kV Bus 531465 to Setab 115kv Bus 531464 to Setab 13.8kVkV Bus 531259 CKT 1, near Setab 345kV.                                                      | Stable    | Stable    | Stable               | Stable |  |
| 46  | FLT46_3PH     | 3 phase fault on the Spearville 230kV Bus 539695 to Spearville 115kv<br>Bus 539694 to Spearville 13.8kV Bus 539935 CKT 1, near Spearville<br>230kV.                              | Stable    | Stable    | Stable               | Stable |  |
| 47  | FLT47_3PH     | 3 phase fault on the Spearville 345kV Bus 531469 to Spearville 230kV<br>Bus 539695 to Spearville 13.8kV Bus 531468 CKT 1, near Spearville<br>345kV.                              | Stable    | Stable    | Stable               | Stable |  |
| 48  | FLT48_3PH     | <ul> <li>3 phase fault on Hitchland 345kV Bus 523097 to Beaver County 345kV<br/>Bus 580500 CKT 2, near Hitchland.</li> <li>a. Apply fault at the Hitchland 345kV bus.</li> </ul> | Stable    | Stable    | Stable               | Stable |  |
| 49  | FLT49_3PH     | <ul> <li>3 phase fault on Thistle 345kV Bus 539801 to Woodward 345kV Bus 515375 CKT 2, near Thistle.</li> <li>a. Apply fault at the Thistle 345kV bus.</li> </ul>                | Stable    | Stable    | Stable               | Stable |  |
| 50  | FLT50_3PH     | <ul> <li>3 phase fault on Woodward 345kV Bus 515375 to Beaver County 345kV<br/>Bus 580500 CKT 2, near Woodward.</li> <li>a. Apply fault at the Woodward 345kV bus.</li> </ul>    | Stable    | Stable    | Stable               | Stable |  |

#### 8.0 Power Factor Analysis

A power factor analysis was performed in this study. Table 4 shows the power factor of the customer facility at the POI for various contingencies. The facility will be required to maintain a 95% lagging (providing VARs) and 95% leading (absorbing VARs) power factor at the point of interconnection.

The power factor analysis was also used for reactor sizing. In order to perform this analysis the request and equivalent transmission lines and collectors systems were modeled using specifications provided by the Customer. The cases are modeled such that the generation and capacitor banks are switched out of service, but the wind farm's transmission subsystem (345kV and 34.5kV) remains in-service. The charging from these open-ended transmission facilities is then monitored for reactive power injections into the POI.

Analysis shows that the approximate amount of charging provided by the GEN-2008-018 subsystem is 55 Mvars. It is recommended that the Customer install at least 55 Mvars of reactors at the 345kV bus of its generation facility (on the high side of its substation transformers) to compensate for this injection into the transmission system. See Figure 2: Reactor One-line Diagram.



Figure 2: Reactor One-line Diagram

| Bus 523853 (POI) voltage: 1.01588 PU (Summer) /1.01089<br>PU (Winter) | Group 2 – Hitchland Area |                                      |       |       |                |                  |             |      |
|-----------------------------------------------------------------------|--------------------------|--------------------------------------|-------|-------|----------------|------------------|-------------|------|
| CONTINGENCY                                                           |                          | MW MVAR<br>(Summer) (Summer) PF (Sum |       | nmer) | MW<br>(Winter) | MVAR<br>(Winter) | PF (Winter) |      |
| No contingency                                                        | 405.1                    | 29.8                                 | 0.998 | LAG   | 405.1          | 40.2             | 0.996       | LAG  |
| FINNEY7 345KV BUS 523853 TO HITCHLAND7 345KV BUS                      |                          |                                      |       |       |                |                  |             |      |
| 523097 CKT 1                                                          | 405.1                    | -33.2                                | 0.998 | LEAD  | 405.1          | -13.5            | 1.000       | LEAD |
| FINNEY7 345KV BUS 523853 TO LAMAR7 345KV BUS                          |                          |                                      |       |       |                |                  |             |      |
| 599950 CKT 1                                                          | 405.1                    | -8.6                                 | 1.000 | LEAD  | 405.1          | -7.0             | 1.000       | LEAD |
| FINNEY7 345KV BUS 523853 TO HOLCOMB7 345KV BUS                        |                          |                                      |       |       |                |                  |             |      |
| 531449 CKT 1                                                          | 405.1                    | 207.4                                | 0.912 | LAG   | 405.1          | 205.5            | 0.911       | LAG  |
| HOLCOMB7 345KV BUS 531449 TO SETAB7 345KV BUS                         |                          |                                      |       |       |                |                  |             |      |
| 531465 CKT 1                                                          | 405.1                    | 52.6                                 | 0.993 | LAG   | 405.1          | 123.6            | 0.962       | LAG  |
| HOLCOMB7 345KV BUS 531449 TO BUCKNER7 345KV BUS                       |                          |                                      |       |       |                |                  |             |      |
| 531501 CKT 1                                                          | 405.1                    | 117.6                                | 0.963 | LAG   | 405.1          | 118.4            | 0.964       | LAG  |
| HITCHLAND 345KV BUS 523097 TO POTTER COUNTY                           |                          |                                      |       |       |                |                  |             |      |
| 345KV BUS 523961 CKT 1                                                | 405.1                    | 46.6                                 | 0.995 | LAG   | 405.1          | 61.8             | 0.991       | LAG  |
| HITCHLAND 345KV BUS 523097 TO BEAVER COUNTY                           |                          |                                      |       |       |                |                  |             |      |
| 345KV BUS 580500 CKT 1                                                | 405.1                    | 33.5                                 | 0.997 | LAG   | 405.1          | 42.5             | 0.995       | LAG  |
| SETAB 345KV BUS 531465 TO MINGO 345KV BUS 531451                      | 405.4                    |                                      | 0 075 |       | 105.1          | 105 5            | 0.074       |      |
|                                                                       | 405.1                    | 94.6                                 | 0.975 | LAG   | 405.1          | 105.5            | 0.971       | LAG  |
| BUCKNER 345KV BUS 531501 TO SPEARVILLE 345KV BUS                      | 405.4                    | 00.0                                 | 0.000 |       | 105.4          | 70.0             | 0.000       |      |
|                                                                       | 405.1                    | 80.0                                 | 0.983 | LAG   | 405.1          | 73.6             | 0.986       | LAG  |
| SPEARVILLE 345KV BUS 531469 TO CLARK COUNTY                           | 405.4                    | 05.0                                 | 0.007 |       | 105.4          | 10.0             | 0.005       |      |
|                                                                       | 405.1                    | 35.3                                 | 0.997 | LAG   | 405.1          | 43.2             | 0.995       | LAG  |
| SPEARVILLE 345KV BUS 531469 TO IRONWOOD 345KV                         | 105 1                    | 20.5                                 | 0 009 |       | 105 1          | 27.6             | 0.006       |      |
| SDEADVILLE 345KV BUS 531460 TO GEN11-017 345KV BUS                    | 403.1                    | 50.5                                 | 0.990 | LAG   | 403.1          | 57.0             | 0.990       | LAG  |
| 560242 CKT 1                                                          | 405.1                    | 25.6                                 | 0.998 | LAG   | 405.1          | 38.3             | 0.996       | LAG  |
| CLARK COUNTY 345KV BUS 539800 TO THISTLE 345KV                        |                          |                                      |       |       |                |                  |             |      |
| BUS 539801 CKT 1                                                      | 405.1                    | 32.1                                 | 0.997 | LAG   | 405.1          | 44.6             | 0.995       | LAG  |
| THISTLE 345KV BUS 539801 TO WOODWARD 345KV BUS                        |                          |                                      |       |       |                |                  |             |      |
| 515375 CKT 1                                                          | 405.1                    | 52.7                                 | 0.992 | LAG   | 405.1          | 63.8             | 0.990       | LAG  |
| WOODWARD 345KV BUS 515375 TO BEAVER COUNTY                            |                          |                                      |       |       |                |                  |             |      |
| 345KV BUS 580500 CKT 1                                                | 405.1                    | 93.4                                 | 0.978 | LAG   | 405.1          | 100.1            | 0.972       | LAG  |
| HOLCOMB7 115KV BUS 531448 TO JONES 115KV BUS                          |                          |                                      |       |       |                |                  |             |      |
| 531379 CKT 1                                                          | 405.1                    | 31.4                                 | 0.997 | LAG   | 405.1          | 42.0             | 0.996       | LAG  |

| Bus 523853 (POI) voltage: 1.01588 PU (Summer) /1.01089<br>PU (Winter) | 1089 Group 2 – Hitchland Area |                  |        |       |                |                    |       |        |
|-----------------------------------------------------------------------|-------------------------------|------------------|--------|-------|----------------|--------------------|-------|--------|
| CONTINGENCY                                                           | MW<br>(Summer)                | MVAR<br>(Summer) | PF (Su | nmer) | MW<br>(Winter) | MVAR<br>(Winter)   | PF (W | inter) |
| HOLCOMB7 115KV BUS 531448 TO PLYMELL 115KV BUS                        | 40E 1                         | 11 1             | 0.005  |       | 10E 1          | 44.6               | 0.005 |        |
|                                                                       | 405.1                         | 41.1             | 0.995  | LAG   | 405.1          | 44.0               | 0.995 | LAG    |
| 531420 CKT 1                                                          | 405.1                         | 34.8             | 0.997  | LAG   | 405.1          | 41.3               | 0.996 | LAG    |
| HOLCOMB7 115KV BUS 531448 TO GARDEN CITY 115KV                        |                               | 0.10             | 0.001  |       |                |                    | 0.000 |        |
| BUS 531445 CKT 1                                                      | 405.1                         | 30.9             | 0.997  | LAG   | 405.1          | 43.2               | 0.995 | LAG    |
| SPEARVILLE 230KV BUS 539695 TO GREAT BEND 230KV                       |                               |                  |        |       |                |                    |       |        |
| BUS 539679 CKT 1                                                      | 405.1                         | 29.9             | 0.998  | LAG   | 405.1          | 40.6               | 0.996 | LAG    |
| SCOTT CITY 115KV BUS 531433 TO PILE 115KV BUS                         |                               |                  |        |       |                |                    |       |        |
| 531432 CKT 1                                                          | 405.1                         | 29.8             | 0.998  | LAG   | 405.1          | 36.7               | 0.997 | LAG    |
| THREEWINDING FROM HOLCOMB7 345KV BUS 531449 TO                        |                               |                  |        |       |                |                    |       |        |
| HOLCOMB 230KV BUS 531448 TO HOLCOMB 13.8KV BUS                        |                               |                  |        |       |                |                    |       |        |
| 531450 CKT 1                                                          | 405.1                         | 12.1             | 1.000  | LAG   | 405.1          | <mark>-43.3</mark> | 0.991 | LEAD   |
| THREEWINDING FROM HITCHLAND 345KV BUS 523097 TO                       |                               |                  |        |       |                |                    |       |        |
| HITCHLAND 230KV BUS 523095 TO HITCHLAND 13.8KV                        |                               |                  |        |       |                |                    |       |        |
| BUS 523094 CKT 2                                                      | 405.1                         | 30.3             | 0.998  | LAG   | 405.1          | 40.9               | 0.996 | LAG    |
| THREEWINDING FROM SETAB 345KV BUS 531465 TO                           |                               |                  |        |       |                |                    |       |        |
| SETAB 115KV BUS 531464 TO SETAB 13.8KV BUS 531259                     |                               |                  |        |       |                |                    |       |        |
| CKT 1                                                                 | 405.1                         | 20.1             | 0.999  | LAG   | 405.1          | 34.6               | 0.997 | LAG    |
| THREEWINDING FROM SPEARVILLE 230KV BUS 539695                         |                               |                  |        |       |                |                    |       |        |
| TO SPEARVILLE 115KV BUS 539694 TO SPEARVILLE                          |                               |                  |        |       |                |                    |       |        |
| 13.8KV BUS 539935 CKT 1                                               | 405.1                         | 29.9             | 0.998  | LAG   | 405.1          | 40.2               | 0.996 | LAG    |
| THREEWINDING FROM SPEARVILLE 345KV BUS 531469                         |                               |                  |        |       |                |                    |       |        |
| TO SPEARVILLE 230KV BUS 539695 TO SPEARVILLE                          |                               |                  |        |       |                |                    |       |        |
| 13.8KV BUS 531468 CKT 1                                               | 405.1                         | 29.1             | 0.998  | LAG   | 405.1          | 41.0               | 0.996 | LAG    |

| Bus 523853 (POI) voltage: 1.0029 PU (Summer) /1.00 PU (Winter)        | Group 3 – Spearville Area |                  |        |       |                |                    |       |        |
|-----------------------------------------------------------------------|---------------------------|------------------|--------|-------|----------------|--------------------|-------|--------|
| CONTINGENCY                                                           | MW<br>(Summer)            | MVAR<br>(Summer) | PF (Su | mmer) | MW<br>(Winter) | MVAR<br>(Winter)   | PF (W | inter) |
| No contingency                                                        | 405.1                     | 52.9             | 0.992  | LAG   | 405.1          | 130.7              | 0.952 | LAG    |
| FINNEY7 345KV BUS 523853 TO HITCHLAND7 345KV BUS 523097 CKT 1         | 405.1                     | 130.9            | 0.952  | LAG   | 405.1          | 185.2              | 0.909 | LAG    |
| FINNEY7 345KV BUS 523853 TO LAMAR7 345KV BUS 599950 CKT 1             | 405.1                     | -5.5             | 1.000  | LEAD  | 405.1          | 60.2               | 0.989 | LAG    |
| FINNEY7 345KV BUS 523853 TO HOLCOMB7 345KV BUS 531449 CKT 1           | 405.1                     | 70.3             | 0.985  | LAG   | 405.1          | 72.6               | 0.984 | LAG    |
| HOLCOMB7 345KV BUS 531449 TO SETAB7 345KV BUS 531465 CKT 1            | 405.1                     | 101.7            | 0.970  | LAG   | 405.1          | 197.8              | 0.899 | LAG    |
| HOLCOMB7 345KV BUS 531449 TO BUCKNER7 345KV BUS 531501 CKT 1          | 405.1                     | 9.9              | 1.000  | LAG   | 405.1          | 58.1               | 0.990 | LAG    |
| HITCHLAND 345KV BUS 523097 TO POTTER COUNTY<br>345KV BUS 523961 CKT 1 | 405.1                     | 58.8             | 0.990  | LAG   | 405.1          | 136.7              | 0.948 | LAG    |
| HITCHLAND 345KV BUS 523097 TO BEAVER COUNTY<br>345KV BUS 580500 CKT 1 | 405.1                     | 48.3             | 0.993  | LAG   | 405.1          | 124.0              | 0.956 | LAG    |
| SETAB 345KV BUS 531465 TO MINGO 345KV BUS 531451<br>CKT 1             | 405.1                     | 138.4            | 0.946  | LAG   | 405.1          | 215.4              | 0.883 | LAG    |
| BUCKNER 345KV BUS 531501 TO SPEARVILLE 345KV BUS 531469 CKT 1         | 405.1                     | 195.8            | 0.900  | LAG   | 405.1          | <mark>236.0</mark> | 0.864 | LAG    |
| SPEARVILLE 345KV BUS 531469 TO CLARK COUNTY<br>345KV BUS 539800 CKT 1 | 405.1                     | 88.5             | 0.977  | LAG   | 405.1          | 157.8              | 0.932 | LAG    |
| SPEARVILLE 345KV BUS 531469 TO IRONWOOD 345KV<br>BUS 539803 CKT 1     | 405.1                     | 82.6             | 0.980  | LAG   | 405.1          | 151.3              | 0.937 | LAG    |
| SPEARVILLE 345KV BUS 531469 TO GEN11-017 345KV BUS 560242 CKT 1       | 405.1                     | 127.6            | 0.954  | LAG   | 405.1          | 185.4              | 0.909 | LAG    |
| CLARK COUNTY 345KV BUS 539800 TO THISTLE 345KV<br>BUS 539801 CKT 1    | 405.1                     | 121.3            | 0.958  | LAG   | 405.1          | 190.2              | 0.905 | LAG    |
| THISTLE 345KV BUS 539801 TO WOODWARD 345KV BUS 515375 CKT 1           | 405.1                     | 66.8             | 0.987  | LAG   | 405.1          | 131.5              | 0.951 | LAG    |
| WOODWARD 345KV BUS 515375 TO BEAVER COUNTY                            | 405.1                     | 54.7             | 0.991  | LAG   | 405.1          | 130.6              | 0.952 | LAG    |

| Bus 523853 (POI) voltage: 1.0029 PU (Summer) /1.00 PU (Winter) | Group 3 – Spearville Area |                  |        |       |                |                  |       |        |
|----------------------------------------------------------------|---------------------------|------------------|--------|-------|----------------|------------------|-------|--------|
| CONTINGENCY                                                    | MW<br>(Summer)            | MVAR<br>(Summer) | PF (Su | nmer) | MW<br>(Winter) | MVAR<br>(Winter) | PF (W | inter) |
| 345KV BUS 580500 CKT 1                                         |                           |                  |        |       |                |                  |       |        |
| HOLCOMB7 115KV BUS 531448 TO JONES 115KV BUS                   |                           |                  |        |       |                |                  |       |        |
| 531379 CKT 1                                                   | 405.1                     | 54.8             | 0.991  | LAG   | 405.1          | 132.8            | 0.950 | LAG    |
| HOLCOMB7 115KV BUS 531448 TO PLYMELL 115KV BUS                 |                           |                  |        |       |                |                  |       |        |
| 531393 CKT 1                                                   | 405.1                     | 55.6             | 0.991  | LAG   | 405.1          | 130.7            | 0.952 | LAG    |
| HOLCOMB7 115KV BUS 531448 TO FLETCHER 115KV BUS                |                           |                  |        |       |                |                  |       |        |
| 531420 CKT 1                                                   | 405.1                     | 59.4             | 0.989  | LAG   | 405.1          | 130.5            | 0.952 | LAG    |
| HOLCOMB7 115KV BUS 531448 TO GARDEN CITY 115KV                 |                           |                  |        |       |                |                  |       |        |
| BUS 531445 CKT 1                                               | 405.1                     | 53.9             | 0.991  | LAG   | 405.1          | 134.2            | 0.949 | LAG    |
| SPEARVILLE 230KV BUS 539695 TO GREAT BEND 230KV                |                           |                  |        |       |                |                  |       |        |
| BUS 539679 CKT 1                                               | 405.1                     | 86.2             | 0.978  | LAG   | 405.1          | 153.3            | 0.935 | LAG    |
| SCOTT CITY 115KV BUS 531433 TO PILE 115KV BUS                  |                           |                  |        |       |                |                  |       |        |
| 531432 CKT 1                                                   | 405.1                     | 56.1             | 0.991  | LAG   | 405.1          | 129.6            | 0.952 | LAG    |
| THREEWINDING FROM HOLCOMB7 345KV BUS 531449 TO                 |                           |                  |        |       |                |                  |       |        |
| HOLCOMB 230KV BUS 531448 TO HOLCOMB 13.8KV BUS                 |                           |                  |        |       |                |                  |       |        |
| 531450 CKT 1                                                   | 405.1                     | 74.9             | 0.983  | LAG   | 405.1          | 75.9             | 0.983 | LAG    |
| THREEWINDING FROM HITCHLAND 345KV BUS 523097 TO                |                           |                  |        |       |                |                  |       |        |
| HITCHLAND 230KV BUS 523095 TO HITCHLAND 13.8KV                 |                           |                  |        |       |                |                  |       |        |
| BUS 523094 CKT 2                                               | 405.1                     | 53.8             | 0.991  | LAG   | 405.1          | 131.9            | 0.951 | LAG    |
| THREEWINDING FROM SETAB 345KV BUS 531465 TO                    |                           |                  |        |       |                |                  |       |        |
| SETAB 115KV BUS 531464 TO SETAB 13.8KV BUS 531259              | 405.4                     | 45.4             | 0.004  | 1.40  | 105 4          | 400.0            | 0.050 |        |
|                                                                | 405.1                     | 45.4             | 0.994  | LAG   | 405.1          | 129.3            | 0.953 | LAG    |
|                                                                |                           |                  |        |       |                |                  |       |        |
| 10 SPEARVILLE TISKV BUS 539694 TU SPEARVILLE                   | 105 1                     | 52.0             | 0.002  |       | 105 1          | 120 7            | 0.052 |        |
|                                                                | 405.1                     | 53.0             | 0.992  | LAG   | 405.1          | 130.7            | 0.952 | LAG    |
|                                                                |                           |                  |        |       |                |                  |       |        |
| 13 8KV BUS 531/68 CKT 1                                        | 105 1                     | 53.0             | 0 002  |       | 105 1          | 131.0            | 0 051 | LAG    |
| 13.8KV BUS 531468 UKT 1                                        | 405.1                     | 53.0             | 0.992  | LAG   | 405.1          | 131.9            | 0.951 | LAG    |

Lowest leading power factor Lowest lagging power factor

### 9.0 Limited Operation before Finney-Holcomb 345kV circuit #2

Additionally, the Customer requested a Limited Operation Study to be performed for the latest configuration of the wind farm to determine the maximum amount of generation that can be interconnected prior to the completion of the Finney-Holcomb 345kV transmission line.

The configuration provided by the Customer for GEN-2008-018 was used to represent GEN-2008-018 into the study models. An outage of the Finney-Holcomb 345kV line was simulated until a converged powerflow solution was obtained.

| Season | Monitored<br>Element | Contingency    | Max MW<br>Available |
|--------|----------------------|----------------|---------------------|
| Spring | Non-Converged        | Finney-Holcomb | 350MW               |

In no way does this study guarantee operation for all periods of time. It should be noted that although this study analyzed many of the most probable contingencies, it is not an all-inclusive list and cannot account for every operational situation. Because of this, it is likely that the **Customer[s] may be required to reduce their generation output to 0 MW** under certain system conditions to allow system operators to maintain the reliability of the transmission network.

### 10.0 Conclusion

The findings of the restudy show that no stability problems were observed during the summer or the winter peak conditions due to the use of the GE 1.85MW wind turbine generators. Additionally, the project wind farm was found to stay connected during the contingencies that were studied and therefore, meet the Low Voltage Ride Through (LVRT) requirements of FERC Order #661A.

A power factor analysis was performed in this study. The facility will be required to maintain a 95% lagging (providing VARs) and 95% leading (absorbing VARs) power factor at the point of interconnection. Additionally, GEN-2008-018 is required to install capacitor banks (40MVAR) and reactor banks (55MVAR) in addition to its generator reactive capability (+/-0.90 power factor).

A Limited Operation Study was performed at the Customer's request to determine the operating limit before the Finney-Holcomb 345kV circuit #2 can be completed. Analysis has determined to avoid potential voltage collapse, the GEN-2008-018 Generator can interconnect a maximum of 350MW before the Finney-Holcomb 345kV line can be completed.

With the assumptions outlined in this report and with all required network upgrades from the GEN-2008-018 GIA in place, GEN-2008-018 with the wind turbine generators described in the study should be able to reliably interconnect to the SPP transmission grid.